误差函数

乙狀結構特殊函數,發生在概率,統計和偏微分方程中
(重定向自誤差函數

数学中,误差函数(英語:Error function)是一个特殊函数,符号。误差函数在概率论统计学以及偏微分方程中都有广泛的应用。它的定义如下:[1][2]

误差函数
互补误差函数

分类

互补误差函数,记为 erfc,在误差函数的基础上定义:

虚误差函数,记为 erfi,定义为:

複誤差函數,记为w(z),也在误差函数的基础上定义:

词源

误差函数来自测度论,后来与测量误差无关的其他领域也用到这一函数,但仍然使用误差函数这一名字。

误差函数与标准正态分布的积分累积分布函数 的关系为[2]

性质

复平面上的图
Integrand exp(−z2)
erf(z)

误差函数是奇函数

对于任何 复数 z:

其中 表示 z复共轭

复平面上,函数 ƒ = exp(−z2) 和 ƒ = erf(z) 如图所示。粗绿线表示 Im(ƒ) = 0,粗红线表示 Im(ƒ) < 0, 粗蓝线为 Im(ƒ) > 0。细绿线表示 Im(ƒ) = constant,细红线表示 Re(ƒ) = constant<0,细蓝线表示 Re(ƒ) = constant>0。

在实轴上, z → ∞时,erf(z) 趋于1,z → −∞时,erf(z) 趋于−1 。在虚轴上, erf(z) 趋于 ±i∞。

泰勒级数

误差函数是整函数,没有奇点(无穷远处除外),泰勒展开收敛。

误差函数泰勒级数:

对每个复数 z均成立。上式可以用迭代形式表示:

误差函数的导数

误差函数的 不定积分为:

逆函数

逆誤差函數

逆误差函数 可由 麦克劳林级数表示:

其中, c0 = 1 ,

即:

逆互补误差函数定义为:

渐近展开

互补误差函数的渐近展开


其中 (2n – 1)!! 为 双阶乘x为实数,该级数对有限 x发散。对于 ,有

其中余项用以 大O符号表示为

as .

余项的精确形式为:

对于比较大的 x, 只需渐近展开中开始的几项就可以得到 erfc(x)很好的近似值。

连分式展开

互补误差函数的连分式展开形式:[3]

初等函数近似表达式

    (最大误差: 5·10−4)

其中, a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108

    (最大误差:2.5·10−5)

其中, p = 0.47047, a1 = 0.3480242, a2 = −0.0958798, a3 = 0.7478556

    (最大误差: 3·10−7)

其中, a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672, a6 = 0.0000430638

    (最大误差: 1.5·10−7)

其中, p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027, a5 = 1.061405429

以上所有近似式适用范围是: x ≥ 0. 对于负的 x, 误差函数是奇函数这一性质得到误差函数的值, erf(x) = −erf(−x).

另有近似式:

其中,

该近似式在0或无穷的邻域非常准确,x整个定义域上,近似式最大误差小于0.00035,取 a ≈ 0.147 ,最大误差可减小到0.00012。[4]

逆误差函数近似式:

数值近似

下式在整个定义域上,最大误差可低至 [5]

其中,

与其他函数的关系

误差函数本质上与标准正态累积分布函数 是等价的,

可整理为如下形式:

的逆函数为正态分位函数,即概率单位英语Probit函数,

误差函数为标准正态分布的尾概率Q函数英语Q-function的关系为,

误差函数是米塔-列夫勒函数的特例,可以表示为合流超几何函数

误差函数用正则Γ函数P和 不完全Γ函数表示为

符号函数.

广义误差函数

广义误差函数图像 En(x):
灰线: E1(x) = (1 − e −x)/
红线: E2(x) = erf(x)
绿线: E3(x)
蓝线: E4(x)
金线: E5(x).

广义误差函数为:

其中,E0(x)为通过原点的直线, E2(x) 即为误差函数 erf(x)。

x > 0时,广义误差函数可以用Γ函数和 不完全Γ函数表示,

因此,误差函数可以用不完全Γ函数表示为:

互补误差函数的迭代积分

互补误差函数的迭代积分定义为:

可以展开成幂级数:

满足如下对称性质:

函数表

xerfc(x)/2
17.86496e−2
22.33887e−3
31.10452e−5
47.70863e−9
57.6873e−13
61.07599e−17
72.09191e−23
85.61215e−30
92.06852e−37
101.04424e−45
117.20433e−55
126.78131e−65
138.69779e−76
141.51861e−87
153.6065e−100
161.16424e−113
175.10614e−128
183.04118e−143
192.45886e−159
202.69793e−176
214.01623e−194
228.10953e−213
232.22063e−232
248.24491e−253
254.15009e−274
262.8316e−296
272.61855e−319

注释

参见

参考文献

外部链接