朗伯W函数

為x乘上e的x次方的反函數

朗伯W函数(英語:Lambert W function,又称为欧米加函数乘积对数),是反函数,其中指数函数是任意复数。对于任何复数,都有:

的图像,

由于函数不是单射,因此函数多值的(除了0以外)。如果我们把限制为实数,并要求是实数,那么函数仅对于有定义,在内是多值的;如果加上的限制,则定义了一个单值函数(见图)。我们有。而在内的分支,则记为,从递减为

朗伯函数不能用初等函数来表示。它在组合数学中有许多用途,例如的计算。它可以用来解许多含有指数的方程,也出现在某些微分方程的解中,例如

复平面上的朗伯W函数的函數圖形

微分和积分

朗伯 函数的积分形式为


,若

把被积函数的实部和虚部分离出来:


,则有 ,展开分离出实部和虚部,

,当 时,易知


,上式还可化为

隐函数的求导法则,朗伯 函数满足以下的微分方程

因此:

函数 ,以及许多含有 的表达式,都可以用 变量代换来积分,也就是说

其中 欧米加常数

性质

其中 高德納箭號表示法

、若 ,则

泰勒级数

的泰勒级数如下:

收敛半径


加法定理

複數值

實部

,

虛部

,

模長

模角

,

共軛值

,

特殊值

欧米加常数

应用

许多含有指数的方程都可以用 函数来解出。一般的方法是把未知数都移到方程的一侧,并设法化为 的形式。

例子

例子1

更一般地,以下的方程

其中

两边同乘:

得到:

同除以:

得到:

同除:

可以用变量代换

化为

即:

同乘:

得出

带入

因此最终的解为

若辅助方程: 中,

,

辅助方程无实数解,原方程亦无实解;

若: ,

辅助方程有一实数解,原方程有一实解:

若: ,

辅助方程有二实解,设为

例子2

用类似的方法,可知以下方程的解

例子3

以下方程的解

具有形式


例子4
 :  :

取对数,

取倒数,

最终解为 :

例子5

两边开 次方并除以

化为

两边同乘

最终得

一般化

標準的 Lambert W 函數可用來表示以下超越代數方程式的解:

其中 a0, cr 為實常數。

其解為

Lambert W 函數之一般化[1][2][3] 包括:

  • 一項在低維空間內廣義相對論量子力學的應用(量子引力),實際上一種以前未知的 連結 於此二區域中,如 “Journal of Classical and Quantum Gravity”[4] 所示其 (1) 的右邊式現為二維多項式 x:
其中 r1r2 是不同實常數,為二維多項式的根。於此函數解有單一引數 xriao 為函數的參數。如此一來,此一般式類似於 “hypergeometric”(超几何分布)函數與 “Meijer G“,但屬於不同類函數。當 r1 = r2,(2)的兩方可分解為 (1) 因此其解簡化為標準 W 函數。(2)式代表著 “dilaton”(軸子)場的方程,可據此推導線性,雙體重力問題 1+1 維(一空間維與一時間維)當兩不等(靜止)質量,以及,量子力學的特徵能Delta位勢阱給不等電位於一維空間。
  • 量子力學的一特例特徵能的分析解三體問題,亦即(三維)氢分子離子[5]於此 (1)(或 (2))的右手邊現為無限級數多項式之比於 x
其中 risi 是相異實常數而 x 是特徵能和內核距離R之函數。式 (3) 與其特例表示於 (1) 和 (2) 是與一更大類型延遲微分方程。由于哈代的“虚假导数”概念,多根的特殊情况得以解决[6]

Lambert "W" 函數於基礎物理問題之應用並未完全即使標準情況如 (1) 最近在原子,分子,與光學物理領域可見[7] 以及黎曼假设的 Keiper-Li 准则 [8]

图象

计算

W函数可以用以下的递推关系算出:

参考来源

外部链接