Число Пелля

Число Пелля — ціле число, що є знаменником у нескінченній послідовності ланцюгових дробів для квадратного кореня з двох. Ця послідовність наближень починається дробами: , тобто перші числа Пелля — 1, 2, 5, 12 і 29. Чисельники тієї самої послідовності наближень є половинами супутних чисел Пелля або числами Пелля — Люка — нескінченої послідовності, що починається з 2, 6, 14, 34 і 82.

Число Пелля
Зображення
Названо на честьДжон Пелл
Формула
Підтримується ВікіпроєктомВікіпедія:Проєкт:Математика

Обидві послідовності — числа Пелля і супутні числа Пелля — можуть бути обчислені за допомогою рекурентної формули, схожої на формули для чисел Фібоначчі, і обидві послідовності чисел зростають експоненціально, пропорційно степеню срібного перетину .Крім використання в ланцюговому дробу наближень до квадратного кореня з двох, числа Пелля можна застосувати для пошуку квадратних трикутних чисел і для вирішення деяких комбінаторних задач перерахування.[1]

Послідовність чисел Пелля відома з давніх часів, хоча Леонард Ейлер помилково приписав їх відкриття Джону Пеллю (як і рівняння Пелля). Числа Пелля — Люка названі на честь Едуарда Люка, який вивчав ці послідовності. І числа Пелля, і супутні числа Пелля є окремими випадками послідовностей Люка.

Числа Пелля

Числа Пелля задаються лінійним рекурентним співвідношенням:

і є окремим випадком послідовності Люка.

Перші кілька чисел Пелля

9, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, … (послідовність A000129 з Онлайн енциклопедії послідовностей цілих чисел, OEIS).

Числа Пелля можна виразити формулою

Для великих значень n член домінує в цьому виразі, так що числа Пелля приблизно пропорційні ступені срібного перетину , також як швидкість росту чисел Фібоначчі дорівнює ступені золотого перетину.

Можливо і третє визначення — у вигляді матричної формули

Багато тотожностей можуть бути доведені з цих визначень, наприклад тотожність, аналогічне тотожності Кассіні[ru] для чисел Фібоначчі,

як негайний наслідок матричної формули (підставляючи визначники матриць ліворуч і праворуч).[2]

Наближення до квадратного кореня з двох

Раціональне наближення до правильних восьмикутників, із координатами з чисел Пелля

Числа Пелля виникли історично з раціональних наближень до квадратного кореня з двох.Якщо два великих цілих x і y дають рішення рівняння Пелля

то їх відношення дає близьке наближення до .Послідовність наближень цього виду

де знаменник кожного дробу — число Пелля, а чисельник дорівнює сумі числа Пелля і його попередника в послідовності. Таким чином, наближення мають вигляд .

Наближення

цього типу було відомо математикам Індії в третьому-четвертому столітті до нашої ери.[3]Грецькі математики п'ятого століття до нашої ери також знали про це наближення.[4]Платон посилається на чисельники як раціональні діаметри.[5]У другому столітті нашої ери Теон Смирнський[ru] використовував терміни сторона і діаметр для опису знаменника і чисельника цієї послідовності.[6]

Ці наближення можуть бути отримані з ланцюгового дробу :

Скінчена частина ланцюгового дробу дає апроксимацію у вигляді чисел Пелля.Наприклад,

Як писав Кнут (1994), факт апроксимації числами Пелля дозволяє використовувати їх для раціонального наближення до правильного восьмикутника з координатами вершин и .Усі вершини цього восьмикутника однаково віддалені від центру і формують майже однакові кути. Водночас точки , и формують восьмикутник, у якого вершини майже однаково віддалені від центру та мають однакові кути.

Прості й квадрати

Простим числом Пелля називається число Пелля, що є також простим. Кілька перших простих чисел Пелля

2, 5, 29, 5741, … (послідовність A086383 з Онлайн енциклопедії послідовностей цілих чисел, OEIS)

Як і у випадку з числами Фібоначчі, число Пелля може бути простим тільки якщо n просте.

Є всього три числа Пелля, які є квадратами, кубами та іншими вищими ступенями, — це 0, 1, і 169 = 132.[7]

Попри те, що серед чисел Пелля настільки мало квадратів та інших степенів, вони мають близький зв'язок із квадратними трикутними числами.[8]Ці числа виникають із наступної тотожності:

Ліва частина цієї тотожності дає квадратне число, у той час як права частина дає трикутне число, так що в результаті отримаємо квадратне трикутне число.

Сантана (Santana) і Діац-Барреро (Diaz-Barrero) (2006) довели іншу тотожність, що пов'язує числа Пелля з квадратами. Вони показали, що сума чисел Пелля до завжди є квадратом:

Наприклад, сума чисел Пелля до , , є квадратом числа .

Числа , які утворюють квадратні корені таких сум,

1, 7, 41, 239, 1393, 8119, 47321, … (послідовність A002315 з Онлайн енциклопедії послідовностей цілих чисел, OEIS), відомі як прості числа Ньюмена—Шенкса—Вільямса[ru].

Піфагорові трійки

Прямокутні трикутники з майже рівними катетами і цілочисельними координатами, породжені числами Пелля.

Якщо прямокутний трикутник має сторони a, b, c (по теоремі Піфагораa2+b2=c2), то (a,b,c) відомі як піфагорові трійки. Мартін (Martin) (1875) писав, що числа Пелля можна застосувати для формування піфагорових трійок, в яких a і b відрізняються на одиницю, що відповідає майже рівнобедреному прямокутному трикутнику. Кожна така трійка має вигляд

Послідовність піфагорових трійок, отримана таким способом: (4,3,5), (20,21,29), (120,119,169), (696,697,985), ….

Числа Пелля — Люка

Супутні числа Пелля або числа Пелля — Люка визначаються лінійним рекурентним співвідношенням:

Тобто, перші два числа в послідовності рівні 2, а всі інші формуються як сума подвоєного попереднього числа Пелля—Люка та попереднього до нього, або, що еквівалентно, як сума наступного та попереднього чисел Пелля.Так, супутнім для 82 є число 29, і 82 = 2 · 34 + 14 = 70 + 12.

Супутні числа Пелля утворюють послідовність:

2, 2, 6, 14, 34, 82, 198, 478, … (послідовність A002203 з Онлайн енциклопедії послідовностей цілих чисел, OEIS)

Супутні числа Пелля можна подати формулою:

Усі ці числа парні, кожне з них є подвоєним чисельником у наближенні раціональними числами до .

Обчислення та зв'язки

Наступна таблиця дає декілька перших степенів срібного перетину і пов'язаного з ним .

0
1
2
3
4
5
6
7
8
9
10
11
12

Коефіцієнти являють собою половини супутніх чисел Пелля і числа Пелля , є невід'ємними розв'язками рівняння .

Квадратне трикутне число — це число , яке є як трикутним числом так і квадратним. Майже рівнобедрені піфагорові трійки є цілими розв'язками , де .

Наступна таблиця показує розкладання непарних на дві майже однакові половинки, що дає квадратне трикутне число, коли n парне, і майже рівнобедрену піфагорову трійку, коли n непарне.

tt+1sabc
010000
111011
232121
375345
41712896
54129202129
69970495035
7239169119120169
8577408288289204
91393985696697985
1033632378168116821189
1181195741405940605741
121960113860980098016930

Визначення

Половини супутніх чисел Пелля і числа Пелля можна отримати декількома еквівалентними шляхами:


Піднесення до степеня:

Звідки випливає:

і

Парні рекурентні відношення:

або, в матричному вигляді:

Таким чином

Наближення

Різниця і дорівнює , що швидко наближається до нуля.

Таким чином дуже близьке до .

Із цього спостереження випливає, що відношення цілих швидко наближається до у той час як и швидко наближається до .

H2 − 2P2 = ±1

Оскільки є ірраціональним, неможливо отримати , тобто .Найкраще, що ми можемо отримати, це або або .

Невід'ємними рішеннями є пари з парним n, і рішеннями є пари з n непарним.

Щоб зрозуміти це, зауважимо

так що, починаючи з знак чергується ( ).Зауважимо тепер, що кожне позитивне рішення можна отримати з рішення з меншим індексом завдяки рівності .

Квадратні трикутні числа

Необхідну рівність еквівалентно , що перетворюється в при підстановці і . Звідси n-м рішенням буде і

Зауважимо, що і взаємно прості, так що можливо тільки тоді, коли вони є сусідніми цілими, одне — квадрат й інше — подвоєний квадрат .

Оскільки ми знаємо всі рішення рівняння, ми отримуємо

і

tt+1sabc
010
111121101
232896345
375495035212029
41712288289204119120169
54129168116821189697696985
69970980098016930405940605741

Триплети Піфагора

Рівність вірно тільки при , що перетворюється в при підстановці .Тоді n-м рішенням є і


Таблиця вище показує, що з точністю до порядку і дорівнює і , в той час як

Див. також

Примітки

Посилання

🔥 Top keywords: Головна сторінкаЧемпіонат Європи з футболу 2024Спеціальна:ПошукВікіпедія:Культурна спадщина та видатні постаті (2024)Збірна України з футболуБріджертониЧемпіонат Європи з футболу 2020YouTubeУкраїнаЧемпіонат Європи з футболуЗбірна Румунії з футболуРебров Сергій СтаніславовичГлобальний саміт мируРадіо «Свобода»ДефолтРумуніяЛунін Андрій ОлексійовичНаціональна суспільна телерадіокомпанія УкраїниДень батькаДовбик Артем ОлександровичШевченко Андрій МиколайовичЯрмоленко Андрій МиколайовичЧемпіонат Європи з футболу 2024 (кваліфікаційний раунд)Мудрик Михайло Петрович138-ма зенітна ракетна бригада (Україна)FacebookЄрмак Андрій БорисовичСексВійськові звання України22-га окрема механізована бригада (Україна)Зінченко Олександр ВолодимировичТериторіальний центр комплектування та соціальної підтримкиДумками навиворіт 2Чемпіонат Європи з футболу 2016Список операторів систем розподілу України2024 у телебаченніMegogoСписок українських жіночих іменКиїв