Nelinearna optika

(преусмерено са Nonlinear optics)

Nelinearna optika (NLO) je grana optike koja opisuje ponašanje svetlosti u nelinearnim medijima, to jest, medijima u kojima gustina polarizacije P nelinearno reaguje na električno polje E svetlosti. Nelinearnost se tipično uočava samo pri veoma visokom intenzitetu svetlosti (vrednostima atomskog električnog polja, tipično 108 V/m), kao što su one koje daju laseri. Iznad Švingerovog limita, očekuje se da sam vakuum postane nelinearan. U nelinearnoj optici princip superpozicije više ne važi.[1][2][3]

Struktura KTP kristala, gledana duž b ose, koja se koristi u generaciji sekundarnih harmonika.

Istorija

Prvi nelinearni optički efekat koji je bio predviđen bila je dvoprotonska apsorpcija, prema nalazima opisanim u doktorskoj disertaciji Marije Gepert Majer iz 1931. godine, koja je ostala neistražena kao teorijska zanimljivost do 1961. godine, i gotovo istovremeno opažanje apsorpcije dva fotona u Belovim laboratorijama[4] i otkriće druge harmonične generacije Petera Frankena i drugih na Univerzitetu u Mičigenu. Do ovih otrkića je došlo ubrzo nakon konstrukcije prvog lasera zaslugom Teodora Mejmana.[5] Neki od nelinearnih efekata su otkriveni i pre razvoja lasera.[6] Teorijska osnova mnogih nelinearnih procesa prvi put je opisana u Blumbergenovoj monografiji „Nelinearna optika”.[7]

Teorija

Parametarski i „trenutni” nelinearni optički fenomeni (tj. materijal mora biti bez gubitaka i disperzije kroz Kramers-Kronigove relacije), u kojima optička polja nisu prevelika, mogu se opisati ekspanzijom Tejlorove serije dielektrične polarizacione gustine (električni dipolni momenat po jedinici zapremine) P(t) u trenutku t u smislu električnog polja E(t):

gde su χ(n) koeficijenti susceptibilnosti medijuma n-tog reda, a prisustvo takvog člana se generalno naziva nelinearnošću n-tog reda. Treba imati na umu da se polarizaciona gustina P(t) i električno polje E(t) smatraju skalarima radi jednostavnosti. Uopšte rečeno, χ(n) je tenzor (n + 1)-tog ranga koji predstavlja polarizaciono-zavisnu prirodu parametarske interakcije i simetrije (ili nedostatak) nelinearnog materijala.

Talasna jednačina u nelearnom materijalu

Centralni pojam u istraživanju elektromagnetnih talasa je talasna jednačina. Polazeći od Maksvelovih jednačina u izotropnom prostoru, koji ne sadrži slobodna naelektrisanja, može se pokazati da je

gde je PNL nelinearni deo polarizacione gustine, a n je refraktivni indeks, koji dolazi od linearnog člana u P.

Normalno se može koristiti vektorski indentitet

i Gausov zakon (pretpostavljajući da nema slobodnih naelektrisanja, ),

da bi se dobila šire poznata talasna jednačina

Za nelinearni medijum, Gausov zakon ne podrazumeva da identitet

generalno važi, čak ni za izotropni medijum. Međutim, čak i kada ovaj izraz nije identičan 0, često je zanemarivo mali, te se u praksi obično zanemaruje, čime se dolazi do standardne nelinearne talasne jednačine:

Nelinearno formiranje optičkog uzorka

Optička polja koja se prenose preko nelinearnih Kerovih medija takođe mogu ispoljiti formiranje obrazaca zahvaljujući nelinearnom mediju koji pojačava prostorni i vremenski šum. Taj efekat se naziva nestabilnošću optičke modulacije.[8] Ovo je primećeno i kod fotorefraktivnih,[9] fotonskih rešetki,[10] kao i kod foto-reaktivnih sistema.[11][12][13][14] U poslednjem slučaju, optička nelinearnost se postiže reakciono indukovanim povećanjem refraktivnog indeksa.[15]

Molekularna nelinearna optika

Rane studije nelinearne optike i materijala fokusirale su se na neorganske čvrste materije. Razvojem nelinearne optike, ispitivana su molekularna optička svojstva, čime je formirana molekularna nelinearna optika.[16] Tradicionalni pristupi koji su se koristili u prošlosti za poboljšanje nelinearnosti uključuju produženja hromoforskih π-sistema, prilagođavanje alternacije dužine veze, indukovanje intramolekularnog prenosa naboja, produženje konjugacije u 2D i inženjering multipolarne distribucije naboja. Nedavno su predloženi mnogi novi pravci za pojačanu nelinearnost i svetlosne manipulacije, uključujući upletene hromofore, kombinovanje bogate gustine stanja sa naizmeničnim vezama, mikroskopsko kaskadiranje nelinearnosti drugog reda, itd. Zbog istaknutih prednosti, molekularna nelinearna optika se široko koristi u polju biofotonike, uključujući bioimidžing,[17] fototerapije,[18] biodetekcije,[19] etc.

Reference

Literatura

Spoljašnje veze