RD-250 (РД-250)
Country of originUSSR
First flightDecember 16th, 1965
DesignerOKB-456
ManufacturerPA Yuzhmash
Associated L/VR-36, Tsyklon-2 and Tsyklon-3
StatusOut of Production
Liquid-fuel engine
PropellantN2O4 / UDMH
Mixture ratio2.6
CycleGas-generator
Configuration
Chamber2
Performance
Thrust (vac.)882 kN (198.000 lbf)
Thrust (SL)788 kN (177.000 lbf)
Chamber pressure833 MPa (120.800 psi)
Isp (vac.)301 s (2,95 km/s)
Isp (SL)270 s (2,6 km/s)
Dimensions
Dry weight788 kg (1.737 lb)
Used in
R-36, Tsyklon-2 and Tsyklon-3 first stage
References
References[1][2][3][4][5][6]

The RD-250 (GRAU Index 8D518) is the base version of a dual-nozzle family of liquid rocket engines, burning N2O4 and UDMH in the oxidizer rich staged combustion cycle. The RD-250 was developed by OKB-456 for Yangel's PA Yuzhmash ICBM, the R-36 (missile) (8K67). Its variations were also used on the Tsyklon-2 and Tsyklon-3 launch vehicles. It was supposed to be used on the Tsyklon-4, but since the cancellation of the project it should be considered as out of production.

Versions

The engine has seen different versions made:

  • RD-250 (GRAU Index 8D518): Base engine of the family. Used on the R-36. A bundle of three RD-250 form the RD-251 cluster.
  • RD-250P (GRAU Index 8D518P): Improved version of the RD-250. Used on the R-36P. A bundle of three RD-250P form the RD-251P cluser.
  • RD-250M (GRAU Index 8D518M): Improved version of the RD-250P. Used on the R-36-O. A bundle of three RD-250M form the RD-251M cluser.
  • RD-250PM (GRAU Index 8D518PM): Improved version of the RD-250M. Used on the Tsyklon-3. A bundle of three RD-250PM form the RD-261 cluser.
  • RD-252 (GRAU Index 8D724): Vacuum optimized version of the RD-250. Used on the R-36 and Tsyklon-2 second stages.[4]
  • RD-262 (GRAU Index 11D26): Improved version of the RD-252. Used on the Tsyklon-3 second stages.[7]

Modules

Some of these engines were bundled into modules of multiple engines. The relevant modules and auxiliary engines are:

  • RD-251 (GRAU Index 8D723): A module comprising three RD-250. Propulsion module of the R-36 (8K67) first stage.[3]
  • RD-251P (GRAU Index 8D723P): A module comprising three RD-250P. Propulsion module of the R-36P (8K68) first stage.
  • RD-251M (GRAU Index 8D723M): A module comprising three RD-250M. Propulsion module of the R-36-O (8K69) and Tsyklon-2 first stage.
  • RD-261 (GRAU Index 11D69): A module comprising three RD-250PM. Propulsion module of the Tsyklon-3 first stage.[8]


Comparison

RD-250 Family of Engines[1]
EngineRD-250RD-250PRD-250MRD-250PMRD-252RD-262
GRAU8D5188D518P8D518M8D518PM8D72411D26
ModuleRD-251RD-251PRD-251MRD-261N/AN/A
Module GRAU8D7238D723P8D723M11D69N/AN/A
Development1962-19661967-19681966-19681968-19701962-19661968-1970
PropellantN2O4/UDMH
Combustion chamber pressure8.336 MPa (1.209.000 psi)8.924 MPa (1.294.300 psi)
Thrust, vacuum8.816 kN (1.982.000 lbf)8.816 kN (1.982.000 lbf)8.816 kN (1.982.000 lbf)8.817 kN (1.982.000 lbf)9.408 kN (2.115.000 lbf)9.414 kN (2.116.000 lbf)
Thrust, sea level7.885 kN (1.773.000 lbf)7.885 kN (1.773.000 lbf)7.885 kN (1.773.000 lbf)7.887 kN (1.773.000 lbf)N/AN/A
Isp, vacuum301 s (2,95 km/s)301 s (2,95 km/s)301 s (2,95 km/s)3.014 s (29,56 km/s)3.176 s (31,15 km/s)318 s (3,12 km/s)
Isp, sea level270 s (2,6 km/s)270 s (2,6 km/s)270 s (2,6 km/s)2.696 s (26,44 km/s)N/AN/A
Length2.600 mm (100 in)2.600 mm (100 in)2.600 mm (100 in)N/A2.190 mm (86 in)2.190 mm (86 in)
Diameter1.000 mm (39 in)1.000 mm (39 in)1.000 mm (39 in)N/A2.590 mm (102 in)2.590 mm (102 in)
Dry weight728 kg (1.605 lb)728 kg (1.605 lb)728 kg (1.605 lb)N/A715 kg (1.576 lb)715 kg (1.576 lb)
UseR-36 (8K67) 1st stageR-36P (8K67P) 1st stageR-36-O (8K67-O) and Tsyklon-2 1st stageTsyklon-3 1st stageR-36, R36P, R-36-O, Tsyklon-2 2nd stageTsyklon-3 2nd stage

Punctuation corrected (a period removed)

Possible technological transfer to North Korea

Several experts think that technology from the RD-250 engine could have been transferred to North Korea (from Ukraine). This transfer would explain the rapid progress of North Korea in the development of two new missiles: the intermediate-range Hwasong-12 and the intercontinental ballistic missile (ICBM), Hwasong-14. Due to complexity of the technology involved in this type of engine, modifications or reverse engineering seem difficult to achieve. Thus it's believable that complete hardware could have been bought on black market and directly shipped to North Korea, by Russia or Ukraine.[9]. Conversely, there is analysis[10] suggesting an alternative mechanism for North Korea to receive R-36 (missile) engines, or an entire missile, from Russia (USSR).

See also

  • R-36 (missile) - ICBM for which this engine was originally developed for.
  • Tsyklon-2 - launch vehicle based on the R-36.
  • Tsyklon-3 - Three stage launch vehicle developed from the Tsyklon-2.
  • Cyclone-4M - launch vehicle based on the R-36
  • Rocket engine using liquid fuel

References

Predloga:Rocket engines