23°01′09″ ю. ш. 67°45′11″ з. д.HGЯO

Atacama Large Millimeter Array

Материал из Википедии — свободной энциклопедии
Перейти к навигацииПерейти к поиску
Atacama Large Millimeter Array
Atacama Large Millimeter Array
ТипРадиоинтерферометр
Расположениепустыня Атакама, Чили
Координаты23°01′09″ ю. ш. 67°45′11″ з. д.HGЯO
Высота5058 м
Диаметр50×12 м
СайтОфициальный сайт
Логотип Викисклада Медиафайлы на Викискладе

Atacama Large Millimeter Array (ALMA; «Атакамская большая [антенная] решётка миллиметрового диапазона») — комплекс радиотелескопов, расположенный в чилийской пустыне Атакама, который наблюдает электромагнитное излучение с миллиметровой и субмиллиметровой длиной волны. Комплекс построен на высоте 5000 м на плато Чайнантор, недалеко от обсерватории плато Чаxнантор[англ.] и Atacama Pathfinder Experiment. Это место было выбрано из-за его большой высоты и низкой влажности, что имеют решающее значение для снижения шума и уменьшения затухания сигнала из-за атмосферы Земли[1].

ALMA начал научные наблюдения во второй половине 2011 года, первые изображения были опубликованы в прессе 3 октября 2011 года. Комплекс был полностью готов к работе с марта 2013 года[2][3].

Одна из радиоантенн, установленных на территории комплекса

Строительство

править код

Первый телескоп был доставлен в 2008 году[4]. 27 июля 2011 года была доставлена 16-я антенна и завершена сборка минимальной конфигурации для начала исследований[5][6]. Во второй половине 2011 года были произведены первые наблюдения, в частности — звезды Фомальгаут[7].

13 марта 2013 года состоялась официальная церемония открытия обсерватории с установленными 59 радиоантеннами[8]. 1 октября 2013 года было объявлено о доставке последней, 66-й антенны на плато Чахнантор, после чего все антенны были объединены в единый телескоп, первые снимки с которого были получены в конце 2013 года[9].

Комплекс имеет 66 антенн (54 антенны диаметром 12 м, и 12 антенн диаметром 7 м[10]), объединённых в единый астрономический радиоинтерферометр[11]. Для математической обработки данных со всех антенн (см. Радиоинтерферометрия со сверхдлинными базами) на станции установлен специализированный суперкомпьютер[12] — коррелятор[13], способный выполнять 17 квадриллионов операций в секунду[8][14].

Детальное изображение нижней хромосферы Бетельгейзе, полученное наблюдением в субмиллиметровом диапазоне в июне 2017 года на ALMA.
Детальное изображение R Зайца, полученное наблюдением в субмиллиметровом диапазоне на ALMA с самым высоким разрешением, когда-либо полученным с помощью ALMA. Субмиллиметровое излучение поверхности звезды показано оранжевым цветом, а излучение мазера на цианистом водороде на частоте 891 ГГц синим цветом, ноябрь 2023 года.

Телескоп предназначен для изучения процессов, происходивших на протяжении первых сотен миллионов лет после Большого Взрыва, когда формировалось первое поколение звёзд. С его помощью планируется получить новые данные, объясняющие механизмы эволюции Вселенной.

Финансирование

править код

Первоначально ALMA являлась общим проектом Европейской южной обсерватории и Национальной радиоастрономической обсерватории (США). Комплекс был расширен при помощи партнёров из Японии, Тайваня и Чили[15]. ALMA является самым большим и самым дорогим астрономическим проектом, базирующимся на Земле. Стоимость проекта оценивается в 1,5 миллиарда долларов[16].

Партнёры:

Работа комплекса

править код

В декабре 2015 года было объявлено, что комплекс ALMA обнаружил новый объект Солнечной системы, предположительно самый удалённый от Солнца из известных на момент открытия[17][18].

В марте 2017 года появилась публикация о том, что при помощи комплекса ALMA астрономы зарегистрировали гигантские массы светящейся межзвездной пыли в галактике A2744 YD4 с красным смещением, соответствующим всего четырём процентам нынешнего возраста Вселенной (z=8,38)[19].

19 июня 2017 года с помощью комплекса ALMA удалось получить самое детальное на сегодняшний день изображение поверхности звезды, отличной от Солнца, — красного сверхгиганта Бетельгейзе[20][21].

14 ноября 2023 года с помощью комплекса, ALMA удалось получить самое детальное на сегодняшний день изображение звезды на заключительной стадии своей эволюции, звезды R Зайца, и изображение с самым высоким разрешением, когда-либо полученным с помощью ALMA. Его угловое разрешение составляет 5 угловых миллисекунд, что эквивалентно наблюдению за 10-метровым автобусом на Луне. Это было достигнуто с использованием нового метода калибровки, в этом так называемом междиапазонном методе, атмосферные колебания компенсируются путем наблюдения за ближайшим калибратором в низкочастотных радиоволнах, в то время как цель наблюдается с помощью высокочастотных радиоволн, и конфигурации радиотелескопов с максимальной длиной «плеча» 16 км. Наблюдения показывают, что звезда окружена кольцевой структурой из газа, который уходит из звезды в окружающее пространство[22][23].

Примечания

править код

Навигация