Температура плавления

Температу́ра плавле́ния (обычно совпадает с температурой кристаллизации) — температура твёрдого кристаллического тела (вещества), при которой оно совершает переход в жидкое состояние. При температуре плавления вещество может находиться как в жидком, так и в твёрдом состоянии. При подведении дополнительного тепла вещество перейдёт в жидкое состояние, а температура не будет изменяться, пока всё вещество в рассматриваемой системе не расплавится. При отведении лишнего тепла (охлаждении) вещество будет переходить в твёрдое состояние (застывать), и, пока оно не застынет полностью, его температура не изменится.

Плавление льда

Температура плавления/отвердевания и температура кипения/конденсации считаются важными физическими свойствами вещества. Температура отвердевания совпадает с температурой плавления только для чистого вещества. На этом свойстве основаны специальные калибраторы термометров для высоких температур. Так как температура отвердевания чистого вещества, например олова, стабильна, достаточно расплавить и ждать, пока расплав не начнёт кристаллизоваться. В это время, при условии хорошей теплоизоляции, температура застывающего слитка не изменяется и в точности совпадает с эталонной температурой, указанной в справочниках.

Смеси веществ не имеют температуры плавления/отвердевания вовсе и совершают переход в некотором диапазоне температур (температура появления жидкой фазы называется точкой солидуса, температура полного плавления — точкой ликвидуса). Поскольку точно измерить температуру плавления такого рода веществ нельзя, применяют специальные методы (ГОСТ 20287 и ASTM D 97). Но некоторые смеси (эвтектического состава) обладают определённой температурой плавления, как чистые вещества.

Аморфные (некристаллические) вещества, как правило, не обладают чёткой температурой плавления. С ростом температуры вязкость таких веществ снижается, и материал становится более жидким.

Поскольку при плавлении объём тела изменяется незначительно, давление мало влияет на температуру плавления. Зависимость температуры фазового перехода (в том числе и плавления, и кипения) от давления для однокомпонентной системы даётся уравнением Клапейрона-Клаузиуса. Температуру плавления при нормальном атмосферном давлении (101 325 Па, или 760 мм ртутного столба) называют точкой плавления.

Температуры плавления некоторых веществ[1]
веществотемпература
плавления
(°C)
гелий (при 2,5 МПа)−272,2
водород−259,2
кислород−219
азот−210,0
метан−182,5
спирт−114,5
хлор−101
аммиак−77,7
ртуть[2]−38,83
водяной лёд[3]0
бензол+5,53
цезий+28,64
галлий+29,8
сахароза+185
сахарин+225
олово+231,93
свинец+327,5
алюминий+660,1
серебро+960,8
золото+1064
медь+1083,4
кремний+1415
железо+1539
титан+1668
платина+1772
цирконий+1852
корунд+2050
рутений+2334
молибден+2622
карбид кремния+2730
карбид вольфрама+2870
осмий+3054
оксид тория+3350
вольфрам[2]+3414
углерод (сублимация)+3547
карбид гафния+3890
карбид тантала-гафния[4]+3990
карбонитрид гафния[5]+4200

Предсказание температуры плавления (критерий Линдемана)

Попытка предсказать точку плавления кристаллических материалов была предпринята в 1910 году Фредериком Линдеманом[англ.][6]. Идея заключалась в наблюдении того, что средняя амплитуда тепловых колебаний увеличивается с увеличением температуры. Плавление начинается тогда, когда амплитуда колебаний становится достаточно большой для того, чтобы соседние атомы начали частично занимать одно и то же пространство.

Критерий Линдемана утверждает, что плавление ожидается, когда среднеквадратическое значение амплитуды колебаний превышает пороговую величину.

Температура плавления кристаллов достаточно хорошо описывается формулой Линдемана[7]:

где  — средний радиус элементарной ячейки,  — температура Дебая, а параметр для большинства материалов меняется в интервале 0,15-0,3.

Температура плавления — расчёт

Формула Линдемана выполняла функцию теоретического обоснования плавления в течение почти ста лет, но развития не имела из-за низкой точности.

Расчёт температуры плавления металлов

В 1999 году профессором Владимирского государственного университета И. В. Гаврилиным было получено новое выражение для расчёта температуры плавления:

где  — температура плавления,  — скрытая теплота плавления,  — универсальная газовая постоянная.


Впервые получено исключительно компактное выражение для расчёта температуры плавления металлов, связывающее эту температуру с известными физическими константами: скрытой теплотой плавления, числом Авогадро и константой Больцмана.

Формула выведена как одно из следствий новой теории плавления и кристаллизации, опубликованной в 2000 году[8]. Точность расчетов по формуле Гаврилина можно оценить по данным таблицы.

Температура плавления некоторых металлов
МеталлСкрытая теплота плавления , ккал*моль−1Температура плавления , K
расчётнаяэкспериментальная
Алюминий 2,58876933
Ванадий 5,5118572180
Марганец 3,5011791517
Железо 4,4014281811
Никель 4,1814061728
Медь 3,1210511357
Цинк 1.73583692
Олово 1,72529505
Молибден 8.7429452890

По этим данным, точность расчетов меняется от 2 до 30 %, что в расчетах такого рода вполне приемлемо.

См. также

Примечания

Литература