Солнечная радиация

Солнечная радиацияэлектромагнитное и корпускулярное излучение Солнца. Данный термин не означает радиацию в «бытовом» смысле этого слова (ионизирующее излучение).

Схема распространения солнечной радиации в атмосфере Земли.

Солнечная радиация измеряется мощностью переносимой ею энергии на единицу площади поверхности (Вт/м2) (см. Солнечная постоянная). В целом, Земля получает от Солнца менее 0,5×10−9 (одной двухмиллиардной) от энергии его излучения.

Электромагнитная составляющая солнечной радиации распространяется со скоростью света и проникает в земную атмосферу. До земной поверхности солнечная радиация доходит в виде прямых и рассеянных лучей.Спектральный диапазон электромагнитного излучения Солнца очень широк — от радиоволн (солнечные радио-всплески)[1] до рентгеновских лучей — однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.

Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300—1200 км/с (см. Солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.

Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Подавляющая доля частиц задерживается атмосферой Земли либо поглощается верхними слоями земной атмосферы, поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть.

ВОЗ признала солнечную радиацию достоверным канцерогеном[2].

Влияние солнечной радиации на климат

Спектр излучения Солнца, наблюдаемый выше атмосферы Земли и на уровне моря

Солнечная радиация — главный источник энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере.

Солнечной радиации подвергается дневная сторона поверхности Земли. Солнечная радиация полностью не блокируется облачностью, и частично достигает поверхности Земли при любой погоде в дневное время за счёт прозрачности облаков для тепловой компоненты спектра солнечной радиации. Для измерения солнечной радиации служат пиранометры и пиргелиометры.

Сумма радиации, полученной небесным телом, зависит от расстояния между планетой и звездой — при увеличении расстояния вдвое количество радиации, поступающее от звезды на планету уменьшается вчетверо (пропорционально квадрату расстояния между планетой и звездой). Таким образом, даже небольшие изменения расстояния между планетой и звездой (вызваны наличием эксцентриситета орбиты) приводят к значительному изменению количества поступающей на планету радиации звезды. Эксцентриситет земной орбиты не является постоянным — с течением тысячелетий орбита меняется, периодически образуя практически идеальный круг, иногда же эксцентриситет достигает 5 % (в настоящее время он равен 1,67 %), то есть в перигелии Земля получает в настоящее время в 1,033 больше солнечной радиации, чем в афелии, а при наибольшем эксцентриситете — более чем в 1,1 раза. Гораздо более сильно количество поступающей солнечной радиации зависит от смены времён года — в настоящее время мощность солнечной радиации, поступающей на Землю, остаётся практически постоянной, но на широтах 65 С. Ш. (широта северных городов России, Канады) летом мощность солнечной радиации, отнесённая к единице поверхности, примерно на порядок больше, чем зимой. Это происходит из-за того, что ось вращения Земли по отношению к плоскости орбиты наклонена под углом 23,3°. Избыток радиации летом и недостаток зимой взаимно компенсируются (если не учитывать эксцентриситет земной орбиты), но, с приближением места наблюдения к полюсам, разрыв между зимой и летом становится всё более существенным. Так, на экваторе разницы между зимой и летом практически нет. За Полярным кругом же, прямые лучи Солнца не достигают поверхности в течение полугода. Таким образом формируются особенности климата различных регионов Земли. Кроме того, периодические изменения эксцентриситета орбиты Земли могут приводить к возникновению различных геологических эпох: к примеру, ледникового периода.

Таблицы

Средняя дневная сумма солнечной радиации, кВтч/м²[3]
ЛонгйирМурманскАрхангельскЯкутскСанкт-ПетербургМоскваНовосибирскБерлинУлан-УдэЛондонХабаровскРостов-на-ДонуСочиНаходкаНью-ЙоркМадридАсуан
1,672,192,292,962,602,722,912,743,472,733,693,454,003,993,834,576,34
Средняя дневная сумма солнечной радиации в декабре, кВтч/м²[3]
ЛонгйирМурманскАрхангельскЯкутскСанкт-ПетербургМоскваНовосибирскБерлинУлан-УдэЛондонХабаровскРостов-на-ДонуСочиНаходкаНью-ЙоркМадридАсуан
000,050,160,170,330,620,610,970,601,291,001,252,041,681,644,30
Средняя дневная сумма солнечной радиации в июне, кВтч/м²[3]
ЛонгйирМурманскАрхангельскЯкутскСанкт-ПетербургМоскваНовосибирскБерлинУлан-УдэЛондонХабаровскРостов-на-ДонуСочиНаходкаНью-ЙоркМадридАсуан
4,995,145,516,195,785,565,484,805,724,845,945,766,755,125,847,418,00
Отражение солнечной радиации от поверхности Земли
Снег чистыйТрава зелёнаяЛес лиственныйПочваВода
71 %20-25 %15-20 %10-30 %9 %
Источник:[4]

Ссылки

Солнечная радиация. Географический словарь. Экологический центр «Экосистема». Дата обращения: 22 мая 2011.

Пособие "Измерение солнечного излучения в солнечной энергетике". Дата обращения: 13 июня 2021. Архивировано из оригинала 5 июля 2013 года.

Примечания