Миокард

Миока́рд (лат. myocardium от др.-греч. μῦς «мышца» + καρδία «сердце») — мышечная ткань сердечного типа, основным гистологическим элементом которой является кардиомиоцит; соответствует среднему слою сердца и образует толщу стенок желудочков и предсердий[B: 1][B: 2].

Миокард
Повреждение мышечной ткани миокарда

Мышечная ткань сердца состоит из отдельных клеток — миоцитов. Различают три вида сердечных миоцитов[B: 3][B: 4]:

  1. проводящие, или атипичные (устар.), кардиомиоциты;
  2. сократительные, или типичные, кардиомиоциты, которые также называют клетками рабочего миокарда;
  3. секреторные кардиомиоциты.

Иные исследователи[1] выделяют пять видов кардиомиоцитов, дополнительно разделяя группу проводящих кардиомиоцитов на синусовые (пейсмекерные), переходные и проводящие.

Волокна рабочего миокарда предсердий и желудочков составляют основную массу сердца —99 %, обеспечивают его нагнетательную функцию[B: 5]. В состав миокарда также входят поддерживающая рыхлая волокнистая соединительная ткань и коронарные сосуды[2].

Эмбриология

Миокард, также как и эпикард, формируется из миоэпикардальной пластинки (висцерального листка сплахнотома шеи зародыша), в то время как эндокард — из мезенхимы[3]. Источники развития сердечной поперечно-полосатой мышечной ткани — симметричные участки висцерального листа сплахнотома в шейной части зародыша — миоэпикардиальные пластинки; из них также дифференцируются клетки мезотелия эпикарда[1]. После ряда митотических делений G1-миобласты начинают синтез сократительных и вспомогательных белков и через стадию G0-миобластов дифференцируются в кардиомиоциты, приобретая вытянутую форму[3].

В отличие от поперечно-полосатой ткани скелетного типа в кардиогенезе не происходит обособления камбиального резерва, а все кардиофиоциты необратимо находятся в фазе G0 клеточного цикла[3]. Стволовых клеток или клеток-предшественников в сердечной мышечной ткани нет, поэтому погибающие кардиомиоциты не восстанавливаются[1].

Гистология

Миокард представляет собой плотное соединение мышечных клеток — кардиомиоцитов, составляющих основную часть миокарда. Отличается от других типов мышечной ткани (скелетная мускулатура, гладкая мускулатура) особым гистологическим строением, облегчающим распространение потенциала действия между кардиомиоцитами.Характерной структурной особенностью ткани сердечной мышцы является наличие в области вставочных дисков зон плотного прилегания мембран кардиомиоцитов — нексусов. За счёт этого в области нексусов создаётся низкое электрическое сопротивление по сравнению с другими областями мембраны, что обеспечивает быстрый переход возбуждения с одного волокна на другое. Такое псевдосинцитиальное строение сердечной мышцы определяет ряд её особенностей[4]. Кроме того, поперечные участки выступов соседних клеток соединены друг с другом посредством интердигитаций и десмосом; к каждой десмосоме со стороны цитоплазмы подходит миофибрилла, закрепляющаяся в десмоплакиновом комплексе, — и таким образом при сокращении тяга одного кардиомиоцита передаётся другому[1].Эту структурную особенность миокарда, способствующую более быстрому распространению потенциала действия в миокарда, обозначают как функциональный синцитий, чтобы показать, что сердце является единым в функциональном отношении органом[5].

Предсердные и желудочковые кардиомиоциты относятся к разным популяциям рабочих кардиомиоцитов. Предсердные кардиомиоциты относительно мелкие, 10 мкм в диаметре и длиной 20 мкм; в них слабее развита система Т-трубочек, но в зоне вставочных дисков значительно больше щелевых контактов. Желудочковые кардиомиоциты крупнее, 25 мкм в диаметре и до 140 мкм в длину; они имеют хорошо развитую систему Т-трубочек. Сократительный аппарат миоцитов предсердий и желудочков различается также и составом изоформ миозина, актина и других сократительных белков[3]. В отличие от желудочковых кардиомиоцитов, форма которых близка к цилиндрической, предсердные кардиомиоциты чаще имеют отростчатую форму и меньшие размеры[6].

Элементарной сократительной единицей кардиомиоцита является саркомер — участок миофибриллы между двумя так называемыми линиями Z. Длина саркомера равна 1,6—2,2 мкм в зависимости от степени сокращения. В саркомере чередуются светлые и тёмные полосы, отчего миофибрилла при световой микроскопии выглядит поперечно исчерченной. В центре находится тёмная полоса постоянной длины (1,5 мкм) — диск A, его ограничивают два более светлых диска I переменной длины. Саркомер миокарда, как и скелетной мышцы, состоит из переплетённых нитей (миофиламентов) двух типов. Толстые нити есть только в диске A. Они состоят из белка миозина, имеют сигарообразную форму, диаметр 10 нм и длину 1,5—1,6 мкм. Тонкие нити включают прежде всего актин и идут от линии Z через диск I в диск A. Их диаметр составляет 5 нм, длина — 1 мкм. Толстые и тонкие нити накладываются друг на друга только в диске A; диск I содержит лишь тонкие нити. При электронной микроскопии между толстыми и тонкими нитями видны поперечные мостики.

Рабочие кардиомиоциты покрыты сарколеммой, состоящей из плазмалеммы и базальной мембраны, в которую вплетаются тонкие коллагеновые и эластические волокна, образующие надёжный внешний скелет этих клеток. Базальная мембрана кардиомиоцитов, содержащая большое количество гликопротеинов, способных связывать Ca2+, может принимать участие наряду с саркотубулярной сетью и митохондриями в перераспределении Ca2+ в цикле сокращение — расслабление. Базальная мембрана латеральных сторон кардиомиоцитов инвагинирует в канальцы Т-системы (в отличие от скелетных мышц[6]).

Часть кардиомиоцитов предсердий (особенно правого) обладает выраженной секреторной функцией (секреторные кардиомиоциты): они содержат у полюсов ядер хорошо выраженный комплекс Гольджи и секреторные гранулы, содержащие гормон атриопептин[3].

Биохимия

Главным источником энергии для миокарда является процесс аэробного окисления неуглеводныхсубстратов. Это свободные жирные кислоты и молочная кислота (около 60 %), пировиноградная кислота, кетоновые тела и аминокислоты (менее 10 %). При интенсивной мышечной работе в крови накапливается молочная кислота в результате анаэробного гликолиза в мышцах. Лактат является дополнительным источником энергии для миокарда, причем, расщепляя молочную кислоту,сердце способствует поддержанию постоянства pH. Около 30 % расходуемой сердцем энергии покрывается за счет глюкозы; при физической нагрузке увеличивается энергетическая доля жирных и молочной кислот при одновременном снижении энергетической доли глюкозы. Однако большая зависимость деятельности сердечной мышцыот аэробного окисления делает сердце весьма зависимым от поступления кислорода к кардиомиоцитам. Поэтому при ухудшении коронарного кровотока и недостаточном поступлении кислорода к сердечной мышце в ней могут развиваться патологические процессы, вплоть до инфаркта. Защитную роль для сердца выполняет его миоглобин, которого в сердечной мышце содержится около 4 мг/г ткани. Он обладает большим сродством к O2, запасает его во время диастолы сердца и отдает во время систолы, когда кровоток в коронарных артериях левого желудочка почти прекращается (сохраняется 15%); в правом желудочке и предсердиях кровоток постоянный[7].

Физиология

Последовательное сокращение и расслабление различных отделов сердца связано с его строением и наличием проводящей системы сердца, по которой распространяется импульс. Миокард предсердий и желудочков разобщён фиброзной перегородкой, что позволяет им сокращаться независимо друг от друга, так как возбуждение не может распространяться по фиброзной ткани. Возбуждение от предсердий к желудочкам проводится только через атриовентрикулярный пучок, отходящий от атриовентрикулярного узла[B: 6].

Секреторные кардиомиоциты предсердий при их сильном растяжении по причине повышенного артериального давления (АД) синтезируют и секретируют атриопептин, вызывающий снижение АД[3].

См. также

Примечания

Литература

Ссылки