Квантовая хромодинамика

(перенаправлено с «КХД»)

Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией, КХД составляет общепринятый теоретический фундамент физики элементарных частиц.

МезонМезонБарионНуклонКваркЛептонЭлектронАдронАтомМолекулаФотонW- и Z-бозоныГлюонГравитонЭлектромагнитное взаимодействиеСлабое взаимодействиеСильное взаимодействиеГравитацияКвантовая электродинамикаКвантовая хромодинамикаКвантовая гравитацияЭлектрослабое взаимодействиеТеория великого объединенияТеория всегоЭлементарная частицаВеществоБозон Хиггса
Краткий обзор различных семейств элементарных и составных частиц и теории, описывающие их взаимодействия. Элементарные частицы слева — фермионы, справа — бозоны. (Термины — гиперссылки на статьи Википедии)

История КХД

С изобретением пузырьковой камеры и искровой камеры в 1950-х годах, экспериментальная физика элементарных частиц обнаружила большое и постоянно растущее число частиц, названных адронами. Стало ясно, что все они не могут быть элементарными. Частицы были классифицированы по электрическому заряду и изоспину; затем (в 1953 году)[1][2][3] Мюрреем Гелл-Манном и Кадзухико Нисидзимой — по странности. Для лучшего понимания общих закономерностей адроны были объединены в группы и по другим сходным свойствам: массам, времени жизни и прочим. В 1963 году Гелл-Манн и, независимо от него, Джордж Цвейг высказали предположение, что структура этих групп (фактически, SU(3)-мультиплетов) может быть объяснена существованием более элементарных структурных элементов внутри адронов. Эти частицы были названы кварками. Все адроны с барионным числом В = 0 (мезоны) состоят из пары «кварк и антикварк», а с числом В = 1 (барионы) — состоят из трёх кварков[4]. Всё многообразие известных на тот момент адронов могло быть построено всего из трёх кварков: u, d и s[5][6]. Впоследствии было открыто ещё три более массивных кварка. Каждый из этих кварков является носителем определённого квантового числа, названного его ароматом.

Однако в подобном описании одна частица, Δ++(1232), оказалась наделена необъяснимыми свойствами; в кварковой модели она составлена из трёх u-кварков со спинами, ориентированными в одном направлении, причём орбитальный момент их относительного движения равен нулю. Все три кварка в таком случае должны находиться в одном и том же квантовом состоянии, а так как кварк является фермионом, подобная комбинация запрещается принципом исключения Паули. В 1965 году Н. Н. Боголюбов, Б. В. Струминский и А. Н. Тавхелидзе[7], и также Хан Мо Ён[англ.] совместно с Йоитиро Намбу[8] и О. Гринбергом[англ.][9] независимо друг от друга решили эту проблему, предположив, что кварк обладает дополнительными степенями свободы калибровочной группы SU(3), позже названными «цветовыми зарядами». На необходимость приписать кваркам дополнительное число было указано Струминским в препринте от 7 января 1965 года[10][11].Результаты работы Н. Н. Боголюбова, Б. Струминского и А. Н. Тавхелидзе были представлены в мае 1965 года на международной конференции по теоретической физике в Триесте[12]. Йоитиро Намбу представил свои результаты осенью 1965 года на конференции в США[13]. Хан и Намбу отметили, что кварк взаимодействует через октет векторных калибровочных бозонов, названных глюонами (англ. glue «клей»).

Поскольку свободных кварков не было обнаружено, считалось, что кварки были просто удобными математическими конструкциями, а не реальными частицами. Эксперименты по глубоко неупругому рассеянию электронов на протонах и связанных нейтронах показали, что в области больших энергий рассеяние происходит на каких-то элементах внутренней структуры, имеющих значительно меньшие размеры, чем размер нуклона: Ричард Фейнман назвал эти элементы «партонами» (так как они являются частями адронов). Результаты были окончательно проверены в экспериментах в SLAC в 1969 году. Дальнейшие исследования показали, что партоны следует отождествить с кварками, а также с глюонами.

Хотя результаты изучения сильного взаимодействия остаются немногочисленными, открытие асимптотической свободы Дэвидом Гроссом, Дэвидом Полицером и Франком Вильчеком позволило сделать множество точных предсказаний в физике высоких энергий, используя методы теории возмущений. Свидетельство существования глюонов было обнаружено в трёхструйных событиях в PETRA в 1979 году. Эти эксперименты становились всё более точными, достигая высшей точки в проверке пертурбативной КХД на уровне нескольких процентов в LEP в CERN.

Другая сторона асимптотической свободы — конфайнмент. Так как сила взаимодействия между цветовыми зарядами не уменьшается с расстоянием, предполагается, что кварки и глюоны никогда не могут быть освобождены из адрона. Этот аспект теории подтверждён расчётами решёточной КХД, но математически не доказан. Поиск этого доказательства — одна из семи «задач тысячелетия», объявленных Математическим институтом Клэя. Другие перспективы непертурбативной КХД — исследование фаз кварковой материи, включая кварк-глюнную плазму.

Формулировка КХД

Квантовое число «‎цвет»

Квантовая хромодинамика основывается на следующем постулате: каждый кварк обладает внутренним квантовым числом, условно называемым цветовым зарядом, или просто цветом. Термин «цвет» введён в качестве показательной аналогии с оптическим цветом. Инвариантная в цветовом пространстве комбинация является суммой трёх различных цветов: «красного» ( ), «зелёного» ( ) и «синего» ( ), которые являются базисными векторами в этом пространстве. По аналогии с оптикой сумма «красного», «зелёного» и «синего» цветов даёт белый цвет (так называемое бесцветное состояние). Антикваркам соответствуют антицвета: «антикрасный» ( ), «антизелёный» ( ) и «антисиний» ( ), причём комбинация «цвет + антицвет» также бесцветна. Глюонам соответствуют комбинации «цвет-антицвет», причём такие комбинации должны быть инвариантными относительно вращений в цветовом пространстве. Таких независимых комбинаций существует восемь:

, , , , , , .

Первые шесть глюонов при этом являются цветными, а последние два – бесцветными. Цвет глюонов может быть также осмыслен как причина изменения цвета кварков при взаимодействии. Например, «синий» кварк может испустить «синий-антизелёный» глюон и превратиться при этом в «зелёный» кварк.

Лагранжиан КХД

Цвет — внутренняя степень свободы кварков и глюонов. Кварковому полю приписывается определённый вектор состояния единичной длины в комплексном трёхмерном цветовом пространстве C(3). Вращения в цветовом пространстве C(3), то есть линейные преобразования, сохраняющие длину, образуют группу SU(3), размерность которой равна 2·3²−3²−1=8.

Поскольку группа SU(3) связна, все её элементы можно получить экспоненцированием алгебры ASU(3). Следовательно, любое вращение в C(3)

можно представить в виде , где 3×3 матрицы (a = 1 … 8) называются матрицами Гелл-Манна и образуют алгебру ASU(3). Поскольку матрицы Гелл-Манна не коммутируют друг с другом, то есть , калибровочная теория, построенная на группе SU(3), является неабелевой (то есть является теорией Янга — Миллса).

Далее используется стандартный принцип калибровочной инвариантности. Рассмотрим лагранжиан свободного кваркового поля

Этот лагранжиан инвариантен относительно глобальных калибровочных преобразований кварковых и антикварковых полей:

где не зависят от координат в обычном пространстве.

Если же потребовать инвариантность относительно локальных калибровочных преобразований (то есть при ), то приходится вводить вспомогательное поле . В результате, лагранжиан КХД, инвариантный относительно локальных калибровочных преобразований, имеет вид (суммирование по ароматам кварков также предполагается)

где тензор напряжённостей глюонного поля[англ.], а есть само глюонное поле.

Видно[источник не указан 91 день], что этот лагранжиан порождает наряду с вершиной взаимодействия кварк-антикварк-глюон и трёхглюонные и четырёхглюонные вершины. Иными словами, неабелевость теории привела к взаимодействию глюонов и к нелинейным уравнениям Янга — Миллса.[источник не указан 91 день]

Применимость КХД к реальным процессам

Расчёты на основе квантовой хромодинамики хорошо согласуются с экспериментом.

Высокие энергии

КХД уже достаточно давно с успехом применяется в ситуациях, когда кварки и глюоны являются адекватным выбором степеней свободы (при адронных столкновениях высоких энергий), в особенности, когда передача импульса от одной частицы к другой тоже велика по сравнению с типичным адронным энергетическим масштабом (порядка 1 ГэВ). Подробно про применение квантовой хромодинамики к описанию адронных столкновений см. в статье Современное состояние теории сильных взаимодействий.

Низкие энергии

При более низких энергиях, из-за сильных многочастичных корреляций работа в терминах кварков и глюонов становится малоосмысленной, и приходится на основе КХД строить эффективную теорию взаимодействия бесцветных объектов — адронов.

Однако начиная с 2008 года для КХД-расчётов стала активно и крайне плодотворно применяться методика КХД на решётке[англ.] — непертурбативный подход к квантовохромодинамическим расчётам, основанный на замене непрерывного пространства-времени дискретной решёткой и симуляции происходящих процессов с помощью метода Монте-Карло. Такие расчёты требуют использования мощных суперкомпьютеров, однако позволяют с достаточно высокой точностью рассчитывать параметры, вычисление которых аналитическими методами невозможно. Например, расчёт массы протона дал величину, отличающуюся от реальной менее чем на 2 %[14][15]. КХД на решётке также позволяет с приемлемой точностью рассчитывать и массы других, в том числе и ещё не открытых адронов, что облегчает их поиск.

В 2010 году с помощью решёточных расчётов была резко уточнена оценка массы u и d-кварков: погрешность снижена с 30 % до 1,5 %[16].

См. также

Примечания

Литература

Учебная

Историческая

Ссылки