Глутатионпероксидазы

Глутатионпероксидазы (ГП, англ. Glutathione peroxidase, PDB 1GP1, (КФ 1.11.1.9 Архивная копия от 26 мая 2011 на Wayback Machine) — семейство ферментов, защищающих организм от окислительного повреждения. Глутатионпероксидазы катализируют восстановление гидроперекисей липидов в соответствующие спирты и восстановление пероксида водорода до воды. Известно несколько генов, кодирующих разные формы глутатионпероксидаз, отличающиеся по локализации в организме. У млекопитающих и человека значительная часть ферментов данного семейства представляет собой селеносодержащие тетрамерные белки и гликопротеины, существуют также мономерные и неселеновые формы[1].

Глутатинопероксидаза 1
Обозначения
СимволыGPX1
Entrez Gene2876
HGNC4553
OMIM138320
RefSeqNM_000581
UniProtP07203
Другие данные
Шифр КФ1.11.1.9
Локус3-я хр. , 3p21.3
Логотип Викиданных Информация в Викиданных ?
глутатионпероксидаза 3 (содержится в плазме крови)
Обозначения
СимволыGPX3
Entrez Gene2878
HGNC4555
OMIM138321
RefSeqNM_002084
UniProtP22352
Другие данные
Шифр КФ1.11.1.9
Локус5-я хр. , 5q23
Логотип Викиданных Информация в Викиданных ?
глутатионпероксидаза 5 (эпидермальный, андрогенсвязанный белок)
Обозначения
СимволыGPX5
Entrez Gene2880
HGNC4557
OMIM603435
RefSeqNM_001509
UniProtO75715
Другие данные
Шифр КФ1.11.1.9
Локус6-я хр. , 6p21.32
Логотип Викиданных Информация в Викиданных ?
глутатионпероксидаза 6 (зрительная система)
Обозначения
СимволыGPX6
Entrez Gene257202
HGNC4558
OMIM607913
RefSeqNM_182701
UniProtP59796
Другие данные
Шифр КФ1.11.1.9
Локус6-я хр. , 6p21
Логотип Викиданных Информация в Викиданных ?

Изоферменты

Существует несколько изоферментов, которые кодируются разными генами. Изоферменты отличаются по локализации в клетке и субстратной специфичности. У человека различают 8 форм GPx, 5 из которых являются селензависимыми (селен входит в состав активного центра)[1]. Глутатионпероксидаза 1 (GPx1) - тетрамерная форма, является наиболее распространенной формой фермента, и обнаружена в цитоплазме практически всех тканей млекопитающих, субстратом GPx1 является как пероксид водорода, так и многие органические гидропероксиды. Глутатионпероксидаза 2 (GPx2) - также тетрамерный фермент, экспрессируется в кишечнике. Наибольшие концентрации этого фермента найдены у основания крипт кишечника. В эмбриогенезе экспрессия гена, кодирующего GPx2, преобладает в быстрорастущих тканях[1]. GPx3 является внеклеточным тетрамерным ферментом и в основном встречается в плазме.[2] Секретируется в плазму крови в основном почками[1]. Глутатионпероксидаза 4 (GPx4) - мономерный изофермент, имеет большое значение в метаболизме гидропероксидов липидов; GPx4 также экспрессируется практически во всех клетках млекопитающих на более низких уровнях. Существует в виде трех форм, синтезирующихся с одного и того же гена (цитозольная, митохондриальная формы и GPx4 ядер клеток спермы)[1]. GPx5 - тетрамерная неселеновая GPx, специфичная для придатков семенников (образуется в эпителии головки придатка семенника)[1]. GPx6 - тетрамер, селенопротеин у человека и неселеновый фермент у грызунов, экспрессия гена этого фермента выявлена в эмбрионах мышей и в боуменовых железах под обонятельным эпителием[1].

Глутатионпероксидаза, выделенная из эритроцитов быка, имеет молекулярную массу около 84 кДа.

Реакция

Примером реакции, катализируемой ферментом глутатионпероксидазой, является реакция:

2GSH + H2O2 → GS-SG + 2H2O.

где GSH обозначает восстановленный глутатион, а GS-SG — дисульфид глутатиона.

Фермент глутатионредуктаза далее восстанавливает окисленный глутатион и завершает цикл:

GS-SG + NADPH + H+ → 2 GSH + NADP+.

Структура

Обнаружено, что у млекопитающих GPx1, GPx2, GPx3 и GPx4 являются селеносодержащими ферментами, тогда как GPx6 — селенопротеин человека с цистеин-содержащими гомологами у грызунов. GPx1, GPx2 и GPx3 являются гомотетрамерными белками, тогда как GPx4 и GPx7 имеют мономерную структуру[1]. Целостность клеточных и внутриклеточных мембран сильно зависит от глутатионпероксидазы. Антиоксидантные функции селенсодержащих форм глутатионпероксидазы сильно увеличены за счет наличия селена[3].

Механизм реакции

В активном центре фермента находится остаток аминокислоты селеноцистеина. Атом селена находится в степени окисления −1 и окисляется гидропероксидом до SeOH. Далее SeOH соединяется с молекулой глутатиона (GSH), образуя Se-SG и далее соединяется с другой молекулой глутатиона. При этом регенерируется Se и образуется побочный продукт GS-SG.

Методы определения активности глутатионпероксидазы

Активность глутатионпероксидазы измеряют спектрофотометрически несколькими методами. Широко используется реакционная смесь, в которую добавляют глутатионредуктазу с последующим измерением конверсии NADPH в NADP[4].  Другой подход — измерение остаточного восстановленного глутатиона (GSH) в реакции с реактивом Эллмана. На основе этого существует несколько методов определения глутатионпероксидазной активности, в каждом из которых применяются разные гидропероксиды в качестве восстанавливаемого субстрата, например, гидропероксид кумола[5], трет-бутилгидропероксид[6] и пероксид водорода[7].

Тиоловая специфичность

Строгая зависимость функционирования глутатионпероксидаз от GSH характерна не для всех изоферментов этого семейства. GPx1 довольно строго специфична к GSH, хотя может использовать гамма-глутамилцистеин вместо GSH в качестве тиолового косубстрата[1]. Получены свидетельства того, что GPx3 способна использовать восстановленный гомоцистеин вместо GSH[8]. Также GPx3 хорошо реагирует с цистеином, тиоредоксином и глутаредоксином вместо GSH[1].

Нокауты генов

Мыши, нокаутные по гену Gpx1 глутатитонпероксидазы имеют нормальный фенотип, нормальную продолжительность жизни. Эти данные указывают на то, что данный фермент не является критичным для жизнедеятельности. Однако, у мышей, нокаутных по двум копиям гена, преждевременно развивается катаракта и наблюдаются дефекты в пролиферации вспомогательных мышечных клеток.[2] Однако, мыши нокаутные по гену GPX4 глутатионпероксидазы 4, погибают в течение раннего эмбрионального развития.[2] Существуют данные, свидетельствующие о том, что пониженный уровень глутатионпероксидазы 4 может повышать продолжительность жизни у мышей.[9]

Данные о нокаутах других генов, кодирующих глутатионпероксидазы, отсутствуют.

Открытие

Глутатионпероксидаза была открыта в 1957 году Гордоном Миллсом.[10]

Примечания

См. также