ಪ್ರಾಚೀನ ಭಾರತೀಯ ಗಣಿತ

ಇದರಲ್ಲಿ ಹದಿನಾರು ಸೂತ್ರಗಳಿವೆ.

ಸಾಮಾನ್ಯವಾಗಿ ಧರ್ಮ, ದರ್ಶನ, ಕಲೆ, ಸಂಗೀತ ಮತ್ತು ಸಾಹಿತ್ಯಗಳಿಗೆ ಹೆಸರಾಗಿರುವ ಪ್ರಾಚೀನ ಭಾರತೀಯ ಸಂಸ್ಕೃತಿಯಲ್ಲಿ ಗಣಿತ ಮತ್ತು ಖಗೋಳವಿಜ್ಞಾನಗಳಿಗೂ ಮಹತ್ತ್ವದ ಸ್ಥಾನ ಕೊಡಲಾಗಿದೆ. ಭಾರತೀಯ ಗಣಿತ ಮತ್ತು ಖಗೋಳವಿಜ್ಞಾನದ ಮೂಲವನ್ನು ಪ್ರಪಂಚದಲ್ಲಿ ಅತ್ಯಂತ ಪ್ರಾಚೀನವೆಂದು ಪರಿಗಣಿಸಲ್ಪಟ್ಟಿರುವ ವೇದಗಳಲ್ಲಿ ಕಾಣುತ್ತೇವೆ. (ಋಗ್ವೇದ ಕ್ರಿಪೂ ಸು. 1500, ಯಜುರ್ವೇದ ಕ್ರಿಪೂ ಸು. 1000, ಅಥರ್ವಣವೇದ ಕ್ರಿಪೂ ಸು. 1000).

ವೇದಕಾಲೀನ ಗಣಿತ

ಕ್ರಿ.ಪೂ. 6-5 ಶತಮಾನದ ಖಗೋಳಗ್ರಂಥವಾದ ವೇದಾಂಗ ಜ್ಯೋತಿಷದಲ್ಲಿಯ ಒಂದು ಶ್ಲೋಕ ಹೀಗಿದೆ:

ಯಥಾ ಶಿಖಾ ಮಯೂರಾಣಾಂ ನಾಗಾನಾಂ ಮಣಯೋ ಯಥಾ
ತದ್ವದ್ವೇದಾಂಗ ಶಾಸ್ತ್ರಾಣಾಂ ಗಣಿತಂ ಮೂರ್ಧನಿ ಸ್ಥಿತಂ

ಇದರ ಅರ್ಥ: ನವಿಲಿನ ಶಿರದಲ್ಲಿ ಶಿಖೆಯಿರುವಂತೆ, ಸರ್ಪಗಳ ಹೆಡೆಯಲ್ಲಿ ಮಣಿಗಳಿರುವಂತೆ ಗಣಿತಶಾಸ್ತ್ರ ವೇದಾಂಗಶಾಸ್ತ್ರಗಳ ಶಿರೋಮಣಿಯಾಗಿದೆ.

ಶುಲ್ವ ಸೂತ್ರಗಳು

ಶಿಕ್ಷಾ, ವ್ಯಾಕರಣ, ಛಂದಸ್ಸು, ನಿರುಕ್ತ, ಜ್ಯೋತಿಷ ಮತ್ತು ಕಲ್ಪ ಎಂಬ ಆರು ವೇದಾಂಗಗಳ ಪೈಕಿ ವಿಶೇಷವಾಗಿ ಕಲ್ಪ ವೇದಾಂಗದ ಶ್ರೌತ ವಿಭಾಗಕ್ಕೆ ಸೇರಿದ ಶುಲ್ವ ಸೂತ್ರಗಳಲ್ಲಿ (ಕ್ರಿ.ಪೂ. 6-5 ಶತಮಾನ) ಅತ್ಯಂತ ಉತ್ಕೃಷ್ಟವಾದ ಗಣಿತದ ನಿಯಮಗಳನ್ನು ಕೊಡಲಾಗಿದೆ. ಸುಮಾರು ಒಂಬತ್ತು ಶುಲ್ವಸೂತ್ರ ಕೃತಿಗಳ ಪೈಕಿ ಬೌಧಾಯನ, ಆಪಸ್ತಂಬ ಮತ್ತು ಕಾತ್ಯಾಯನ ಶುಲ್ವಸೂತ್ರಗಳು ಗಣಿತಶಾಸ್ತ್ರದ ಬೆಳೆವಣಿಗೆಯ ದೃಷ್ಟಿಯಿಂದ ಬಹಳ ಮುಖ್ಯವಾದವು.[೧] ವೇದಕಾಲೀನ ಜನರ ಪ್ರಮುಖ ಕಾರ್ಯವಾಗಿದ್ದ ಯಜ್ಞಗಳ ಆಚರಣೆಗಾಗಿ ಯಜ್ಞವೇದಿಕೆ ಆಥವಾ ಅಗ್ನಿಕುಂಡಗಳನ್ನು ನಿರ್ದಿಷ್ಟ ಆಕಾರ ಮತ್ತು ಗಾತ್ರ ಹೊಂದಿರುವಂತೆ ಇಟ್ಟಿಗೆಗಳಿಂದ ರಚಿಸಬೇಕಾಗಿತ್ತು. ಅಂಥ ರಚನೆಗಳಲ್ಲಿ ಯಾವ ನ್ಯೂನತೆಯೂ ಬರದಂತೆ ನಿರ್ದಿಷ್ಟ ನಿಯಮಗಳನ್ನು ಪಾಲಿಸುವ ಸಂದರ್ಭದಲ್ಲಿ ರೇಖಾಗಣಿತ, ಅಂಕಗಣಿತ ಮತ್ತು ಬೀಜಗಣಿತಗಳ ಬೆಳೆವಣಿಗೆ ಉಂಟಾಯಿತು.

ಶುಲ್ವ ಎಂಬ ಶಬ್ದಕ್ಕೆ ಅಳೆಯುವುದು ಎಂಬ ಮೂಲವಾದ ಅರ್ಥವಿದ್ದು, ಉದ್ದ, ಅಗಲಗಳನ್ನು ಅಳೆಯಲು ರಜ್ಜುವನ್ನು ಬಳಸುತ್ತಿದ್ದುದರಿಂದ ಶುಲ್ವ ಶಬ್ದಕ್ಕೆ ಹಗ್ಗ ಎಂಬ ಅರ್ಥವೂ ಬಂದಿತು. ಇಂದು ರೇಖಾಗಣಿತವೆಂದು ಪರಿಚಿತವಾಗಿರುವ ಶಾಸ್ತ್ರಕ್ಕೆ ವೇದಾಂಗಗಳ ಕಾಲದಲ್ಲಿ ರಜ್ಜುಶಾಸ್ತ್ರ ಅಥವಾ ಶುಲ್ಬಶಾಸ್ತ್ರ ಎಂಬ ಹೆಸರಿತ್ತು. ಋಗ್ವೇದ ಸಂಹಿತೆಯಲ್ಲಿ ನಿರೂಪಿತವಾದ ದಕ್ಷಿಣಾಗ್ನಿ, ಗಾರ್ಹಪತ್ಯ ಮತ್ತು ಆಹವನೀಯ ಎಂಬ ಮೂರು ವಿಧವಾದ ಅಗ್ನಿಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಯಜ್ಞವೇದಿಕೆಗಳನ್ನು ರಚಿಸಲು ನಿಯಮಗಳನ್ನು ಶುಲ್ವಸೂತ್ರಗಳಲ್ಲಿ ವಿಶೇಷವಾಗಿ ಕೊಡಲಾಗಿದೆ.[೨] ಆದರೆ ಈ ಗಣಿತ ನಿಯಮಗಳು ಶುಲ್ವಸೂತ್ರಗಳಿಗಿಂತ ಅನೇಕ ಶತಮಾನಗಳ ಹಿಂದೆಯೇ ಬೆಳೆವಣಿಗೆ ಹೊಂದಿರುವುದು ಕಾಣಬರುತ್ತದೆ. ಅಂಥ ಪ್ರಾಚೀನ ಗಣಿತಜ್ಞರ ಕೊಡುಗೆಯನ್ನು ಶುಲ್ವಸೂತ್ರಗಳಲ್ಲಿ ಬಹಳ ಕೃತಜ್ಞತೆಯಿಂದ ಸ್ಮರಿಸಲಾಗಿದೆ. ಕೆಲವು ವಾಕ್ಯಗಳಂತೂ ನೇರವಾಗಿ ಪ್ರಾಚೀನ ಕೃತಿಗಳಾದ ತೈತ್ತಿರೀಯ ಸಂಹಿತೆ, ತೈತ್ತಿರೀಯ ಬ್ರಾಹ್ಮಣ ಹಾಗೂ ಆರಣ್ಯಕದಿಂದಲೂ ಉದ್ಧರಿತವಾಗಿವೆ.

ಇಡೀ ಪ್ರಪಂಚವೇ ಭಾರತಕ್ಕೆ ಆಭಾರಿಯಾಗಿರಬೇಕಾದ ಅತ್ಯಮೂಲ್ಯವೂ ಮಹತ್ತರವೂ ಆದ ಕೊಡುಗೆಗಳೆಂದರೆ ಶೂನ್ಯ (ಸೊನ್ನೆ) ಮತ್ತು ದಾಶಮಿಕ ಸಂಖ್ಯಾ ಪದ್ಧತಿ.[೩][೪][೫] ಅತಿ ಪ್ರಾಚೀನ ಕಾಲದಿಂದಲೂ ಭಾರತದಲ್ಲಿ ಎಣಿಕೆಗೂ, ಲೆಕ್ಕಾಚಾರಗಳಿಗೂ ದಾಶಮಿಕ ಪದ್ಧತಿಯೇ ಬಳಕೆಯಲ್ಲಿದೆ. ಯಜುರ್ವೇದ ಸಂಹಿತೆಯಲ್ಲಿ ಹತ್ತರ ಘಾತಗಳ ಪಟ್ಟಿಯನ್ನು ಈ ರೀತಿ ಕೊಟ್ಟಿದೆ:[೬]

ಘಾತಹೆಸರುಘಾತಹೆಸರು101 ದಶ107ಅರ್ಬುದ102 ಶತ108ಸ್ಯರ್ಬುದ103ಸಹಸ್ರ109ಸಮುದ್ರ104ಅಯುತ1010ಮಧ್ಯ105ನಿಯುತ1011ಅಂತ106ಪ್ರಯುತ1012ಪರಾರ್ಧ

ಇದೇ ಪಟ್ಟಿಯನ್ನು ತೈತ್ತಿರೀಯ ಸಂಹಿತೆಯಲ್ಲೂ ಕೊಟ್ಟಿದೆ. ಆಗಿನ ಕಾಲದ ಗ್ರೀಕರಿಗೆ ಗೊತ್ತಿದ್ದ ಅತಿ ಹೆಚ್ಚಿನ ಹತ್ತಿರ ಘಾತ ಕೇವಲ ಹತ್ತು ಸಾವಿರ (104). ಅವರು ಅದನ್ನು ಮಿರಿಯಡ್ ಎಂದು ಕರೆಯುತ್ತಿದ್ದರು.

ಸಂಯುಕ್ತ ಸಂಖ್ಯೆಗಳಾದ 11, 27 ಮುಂತಾದವನ್ನು ವೇದ ಸಾಹಿತ್ಯದಲ್ಲಿ ದಾಶಮಿಕ ಪದ್ಧತಿ ಅನುಸರಿಸಿ ಸುಲಭವಾಗಿ ಏಕಾದಶ, ಸಪ್ತವಿಂಶತ ಎಂಬುದಾಗಿ ಬಳಸಿದ್ದಾರೆ. ಹಾಗೆಯೇ ಯಾವುದೇ ಸಂಯುಕ್ತ ಸಂಖ್ಯೆಯ ಹತ್ತಿರದಲ್ಲಿರುವ ಹತ್ತರ ಗುಣಿತದಿಂದ ಕಳೆಯುವ ವಿಧಾನ ಉಪಯೋಗಿಸಿ 19 ಕ್ಕೆ ಏಕೋನವಿಂಶತಿ ಎಂಬುದಾಗಿಯೂ, ಆಪಸ್ತಂಬ ಸೂತ್ರದಲ್ಲಿ 972 ಎಂಬ ಸಂಖ್ಯೆಗೆ ಅಷ್ಟವಿಂಶತ್ಯೂನಂ ಸಹಸ್ರಂ (ಸಾವಿರಕ್ಕೆ 28 ಕಡಿಮೆ) ಎಂದು ಪ್ರಯೋಗಿಸಿದ್ದಾರೆ. ಇಂದು ಪ್ರಪಂಚಾದ್ಯಂತ ಬಳಸಲಾಗುತ್ತಿರುವ ಗಣನೆಯ ಮಾನವಾದ ದಾಶಮಿಕ ಪದ್ಧತಿ ವೇದಗಣಿತದ ಮಹತ್ತರವಾದ ಕೊಡುಗೆ.

ಸಂಖ್ಯೆಗಳನ್ನು ಬೆಸ ಸಂಖ್ಯೆಗಳು ಮತ್ತು ಸರಿ ಸಂಖ್ಯೆಗಳು ಎಂದು ವಿಂಗಡಿಸಿದ್ದು ಮೊತ್ತಮೊದಲನೆಯದಾಗಿ ತೈತ್ತಿರೀಯ ಸಂಹಿತೆಯಲ್ಲಿ. ಭಿನ್ನರಾಶಿಗಳನ್ನು ಭಾಗ ಎಂದು ಕರೆದಿದ್ದಾರೆ. ಋಗ್ವೇದದಲ್ಲಿ ಅರ್ಧ, ಕಾಲು, ಎಂಟನೆಯ ಒಂದು ಮತ್ತು ಹದಿನಾರನೆಯ ಒಂದು ಎಂಬ ಭಿನ್ನರಾಶಿಗಳನ್ನು ಅನುಕ್ರಮವಾಗಿ ಅರ್ಧ, ಪಾದ, ಶಫ ಮತ್ತು ಕಲಾ ಎಂಬುದಾಗಿ ಕರೆದಿದ್ದಾರೆ.

ಶುಲ್ವಸೂತ್ರ ಕೃತಿಗಳಾದ ಬೌಧಾಯನ ಸೂತ್ರ ಹಾಗೂ ಆಪಸ್ತಂಬ ಸೂತ್ರ ಕೃಷ್ಣ ಯಜುರ್ವೇದಕ್ಕೆ ಸೇರಿವೆ. ಇವುಗಳಲ್ಲಿ ಅನುಕ್ರಮವಾಗಿ ಮೂರು ಮತ್ತು ಆರು ಅಧ್ಯಾಯಗಳಿದ್ದು ಮುಖ್ಯವಾಗಿ ಚರ್ಚಿಸಲ್ಪಟ್ಟಿರುವ ಗಣಿತ ವಿಷಯಗಳಿವು:

1. ಪೈಥಾಗೊರಸನ ಪ್ರಮೇಯವನ್ನು ಆತನ ಕಾಲಕ್ಕಿಂತ ಅನೇಕ ಶತಮಾನಗಳ ಹಿಂದೆಯೇ ಶುಲ್ವಸೂತ್ರಗಳಲ್ಲಿ ಬಳಸಲಾಗಿದೆ.[೭]

2. ಮೊತ್ತಮೊದಲಿಗೆ ಅಪರಿಮೇಯ ಸಂಖ್ಯೆಗಳನ್ನು (ಇರ‍್ಯಾಶನಲ್ ನಂಬರ್ಸ್) ಉಲ್ಲೇಖಿಸಿ ಉಪಯೋಗಿಸಿದ ಕೀರ್ತಿ ವೇದಕಾಲಿನ ಭಾರತೀಯರಿಗೆ ಸಲ್ಲುತ್ತದೆ. ಅಪರಿಮೇಯ ಸಂಖ್ಯೆಯಾದ  ಗೆ ಅತಿ ಸನ್ನಿಹಿತವಾದ ಪರಿಮೇಯ ಬೆಲೆಯನ್ನು (ರ‍್ಯಾಶನಲ್ ವೇಲ್ಯೂ) ಕೊಡಲಾಗಿದೆ:

[೮][೯]

3. ಆಯದ ಕರ್ಣ ಆಯವನ್ನು ಸಮದ್ವಿಭಾಗಿಸುತ್ತದೆ.

4. ಎರಡು ಕರ್ಣಗಳು ಪರಸ್ಪರ ಸಮದ್ವಿಭಾಗಿಸುತ್ತವೆ.

5. ವಜ್ರಾಕೃತಿಯ ಕರ್ಣಗಳು ಲಂಬಕೋನದಲ್ಲಿ ಸಂಧಿಸುತ್ತ ಪರಸ್ಪರ ಸಮದ್ವಿಭಾಗಿಸುತ್ತವೆ.

6. ತ್ರಿಭುಜದ ಸಲೆ ಗಣನೆಗೆ ಸೂತ್ರ ಕೊಡಲಾಗಿದೆ. △ABC = ½ BC . AD. ಇಲ್ಲಿ AD ಯು A ಯಿಂದ BC ಗೆ ಎಳೆದ ಲಂಬ.

ಈ ಮುಂದಿನ ಕೆಲವು ವಿಶಿಷ್ಟ ರಚನೆಗಳನ್ನೂ ಕೊಡಲಾಗಿದೆ:

1. ಎರಡು ಚೌಕಗಳ ಸಲೆಗಳ ಮೊತ್ತ ಇರುವಂತೆ ಒಂದು ಚೌಕದ ರಚನೆ.

2. ಎರಡು ಚೌಕಗಳ ಸಲೆಗಳ ವ್ಯತ್ಯಾಸ ಇರುವಂತೆ ಒಂದು ಚೌಕದ ರಚನೆ.

3. ಆಯವನ್ನು ಅಷ್ಟೇ ಸಲೆ ಇರುವ ಚೌಕವಾಗಿ ಪರಿವರ್ತಿಸುವುದು.

ಗಣಿತದಲ್ಲಿ ಬಹಳ ಶತಮಾನಗಳಿಂದ ಇತ್ತೀಚಿನ ತನಕವೂ ಬಿಡಿಸಲಾಗದ ಕೆಲವು ಸಮಸ್ಯೆಗಳಿದ್ದುವು. ಅವುಗಳ ಪೈಕಿ ಒಂದು ಎಂದರೆ ವೃತ್ತದ ಸಲೆಗೆ ಸಮವಾದ ಚೌಕದ ರಚನೆ ಮತ್ತು ವಿಲೋಮ ಸಮಸ್ಯೆ.[೧೦] ಗಣಿತದ ಚರಿತ್ರೆಯಲ್ಲಿ ಅತ್ಯಂತ ಪ್ರಸಿದ್ಧವಾದ ಈ ಸಮಸ್ಯೆ ಮೊತ್ತಮೊದಲು ಕಂಡುಬರುವುದು ವೇದಗಳಲ್ಲಿಯೇ.

ಬೌಧಾಯನ ಸೂತ್ರದಲ್ಲಿ ಇಂಥ ರಚನೆಗೆ ಸನ್ನಿಹಿತವಾದ ಒಂದು ರಚನೆಯನ್ನು ಕೊಡಲಾಗಿದೆ. (ಇದಕ್ಕೆ ನಿಖರ ರಚನೆ ಸಾಧ್ಯವೇ ಇಲ್ಲ ಎಂಬುದಾಗಿ ಆಧುನಿಕ ಗಣಿತದಲ್ಲಿ ಪ್ರಮಾಣಿಕರಿಸಲಾಗಿದೆ.) ಈ ವ್ಯಾವಹಾರಿಕ ರಚನೆಯ ಪ್ರಕಾರ π ಎಂಬ ಸ್ಥಿರಸಂಖ್ಯೆಯ ಬೆಲೆ 3.088 ಎಂದಾಗುತ್ತದೆ.[೧೧]

ವೇದ ಸಮುಚ್ಚಯದಲ್ಲಿ ಬೀಜಗಣಿತಕ್ಕೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಕೆಲವು ಮುಖ್ಯ ಕೊಡುಗೆಗಳನ್ನು ಕಾಣಬಹುದು:

1. ಶುಲ್ವ ಸೂತ್ರಗಳಲ್ಲಿ ax2 = c ಮತ್ತು ax2 = bx = c ಮಾದರಿಯ ವರ್ಗ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸುವ ಸಮಸ್ಯೆಗಳನ್ನು ಕೊಡಲಾಗಿದೆ. ಉದಾಹರಣೆಗೆ ಕಾತ್ಯಾಯನ ಶುಲ್ವಸೂತ್ರದಲ್ಲಿ ಮಾದರಿಯ ವರ್ಗ ಸಮೀಕರಣ ಚರ್ಚಿಸಿ ಅದರ ಸನ್ನಿಹಿತ ಬೆಲೆಯನ್ನು  ಎಂದು ಕೊಡಲಾಗಿದೆ.

2. ಬಹಳಷ್ಟು ಸಮಾಂತರ ಮತ್ತು ಗುಣೋತ್ತರ ಶ್ರೇಢಿಗಳು ತೈತ್ತಿರೀಯ ಸಂಹಿತೆ, ವಾಜಸನೇಯ ಸಂಹಿತೆ, ಶತಪಥ ಬ್ರಾಹ್ಮಣ, ಬೌಧಾಯನ ಶುಲ್ವಸೂತ್ರ ಹಾಗೂ ಅನಂತರ ರಚಿತವಾದ ಪಿಂಗಳನ ಛಂದಸ್ಸೂತ್ರಗಳಲ್ಲಿ ಉಲ್ಲೇಖಗೊಂಡಿವೆ:

a, a + d, a + 2d, ... ಸಮಾಂತರ ಶ್ರೇಢಿ. a, ar, ar2, ... ಗುಣೋತ್ತರ ಶ್ರೇಢಿ.

3. ಬೌಧಾಯನ ಮತ್ತು ಆಪಸ್ತಂಬ ಸೂತ್ರಗಳಲ್ಲಿ x + y = 21 ಮತ್ತು  ಎಂಬ ಮಾದರಿಯ ಕೆಲವು ಒಂದನೆಯ ಡಿಗ್ರಿಯ ಅನಿರ್ದಿಷ್ಟ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸಲಾಗಿದೆ. ಇವುಗಳಿಗೆ ಕುಟ್ಟಕ ಎಂದು ಹೆಸರು.

4. ಬೀಜಗಣಿತದ ಸಮಸ್ಯೆಗಳನ್ನು ಬಿಡಿಸಲು ರೇಖಾಗಣಿತದ ವಿಧಾನಗಳನ್ನು ಪ್ರಯೋಗಿಸುವುದು ಪ್ರಾಚೀನ ಭಾರತೀಯ ಗಣಿತದ ಒಂದು ವೈಶಿಷ್ಟ್ಯ. ಬೇರೆ ಬೇರೆ ಮಾದರಿಯ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸಲು ಶುಲ್ವಸೂತ್ರಗಳಲ್ಲಿ ರೇಖಾಗಣಿತದ ವಿಧಾನಗಳನ್ನು ಬಹಳ ಸ್ವಾರಸ್ಯಕರವಾಗಿ ಉಪಯೋಗಿಸಲಾಗಿದೆ.

5. ಪಿಂಗಳನ ಛಂದಸೂತ್ರದಲ್ಲಿ ದ್ವಿಪದ ಪ್ರಮೇಯಕ್ಕೆ (ಬೈನಾಮಿಯಲ್ ಥಿಯರಮ್) ಸಂಬಂಧಿಸಿದಂತೆ ಕೆಲವು ಅಂಶಗಳ ಬೆಳೆವಣಿಗೆ ಕಾಣಬಹುದು.[೧೨]: 230  ಉದಾಹರಣೆ (a + b)3 ಮತ್ತು (a + b)4 ಮಾದರಿಯ ಸೂತ್ರಗಳನ್ನು ಕೊಡಲಾಗಿದೆ.

ಪ್ರಾಚೀನ ಜೈನರ ಗಣಿತ

ಕ್ರಿಸ್ತಪೂರ್ವ ಸುಮಾರು 500-300ರ ತನಕದ ಅವಧಿಯಲ್ಲಿ ರಚಿತವಾದ ಜಂಬೂದ್ವೀಪ ಪ್ರಜ್ಞಪ್ತಿ, ಸೂರ್ಯಪ್ರಜ್ಞಪ್ತಿ, ಸ್ಥಾನಾಂಗ ಸೂತ್ರ, ತತ್ತ್ವಾರ್ಥಾಧಿಗಮ ಸೂತ್ರ ಮತ್ತು ಅನುಯೋಗ ಸೂತ್ರ ಎಂಬ ಕೃತಿಗಳಲ್ಲಿ ಜೈನ ಗಣಿತಜ್ಞರ ಅತ್ಯಮೂಲ್ಯ ಕೊಡುಗೆ ಉಂಟು. ಜಂಬೂದ್ವೀಪ ಪ್ರಜ್ಞಪ್ತಿಯಲ್ಲಿ π ಯ ಬೆಲೆಯನ್ನು  ಎಂದು ಪರಿಗಣಿಸಿ ಅದನ್ನು 13 ದಶಮಾಂಶ ಸ್ಥಾನಗಳವರೆಗೆ ಕೊಡಲಾಗಿದೆ.  = 3.1622776601683.

ಜೈನಧರ್ಮದಲ್ಲಿ ವಿಶ್ವದ ವಿವರಣೆಗೆ ಸಂಬಂಧಪಟ್ಟ ಲೆಕ್ಕಾಚಾರ ಬಹಳ ಮುಖ್ಯವಾದುದು. ಮೋಕ್ಷ ಸಾಧನೆಗೆ ಸಹಾಯಕ ಶಾಸ್ತ್ರಗಳಾದ ಅನುಯೋಗಗಳ ಪೈಕಿ ಗಣಿತವೂ ಒಂದು. ಅವರ ಪ್ರಾಚೀನ ಗ್ರಂಥಗಳಲ್ಲಿ ವೃತ್ತ, ಸಮಲಂಬ ಚತುರ್ಭಜ, ಕೆಲವು ಆಕಾರದ ಘನವಸ್ತುಗಳು, ಶ್ರೇಢೀವ್ಯವಹಾರ (ಪೋಗ್ರೆಷನ್ಸ್), ಕ್ರಮಯೋಜನೆ ಮತ್ತು ವಿಕಲ್ಪ (ಪರ್ಮ್ಯುಟೆಷನ್ಸ್ ಮತ್ತು ಕಾಂಬಿನೆಷನ್ಸ್) ಮುಂತಾದ ಗಣಿತ ವಿಷಯಗಳನ್ನು ಪ್ರಸ್ತಾವಿಸಲಾಗಿದೆ. ಜೈನ ಗಣಿತವಿದರು ತಮ್ಮ ಗಣನೆಗಳನ್ನು ಬಹಳ ವಿವರವಾಗಿಯೂ, ನಿಖರವಾಗಿಯೂ ಶೋಧಿಸುತ್ತಿದ್ದರು. ಆದರೆ ಕೆಲವೊಮ್ಮ ಊಹೆಗಳೇ ತಪ್ಪಾಗಿದ್ದ ಸಂದರ್ಭದಲ್ಲಿ ಗಣಿತ ಸಾಧನೆಗಳಲ್ಲಿ ದೋಷ ನುಸುಳಿರುವುದು ಸಾಧ್ಯವಿತ್ತು. ಸೂರ್ಯಪ್ರಜ್ಞಪ್ತಿ ಮತ್ತು ಚಂದ್ರಪ್ರಜ್ಞಪ್ತಿ ಗ್ರಂಥಗಳಲ್ಲಿ ಖಗೋಳವಿಜ್ಞಾನವನ್ನು ಪ್ರಸ್ತಾವಿಸಲಾಗಿದೆ.

ಉಮಾಸ್ವಾತಿಯ ತತ್ತ್ವಾರ್ಥಾಧಿಗಮ ಸೂತ್ರ ಭಾಷ್ಯದಲ್ಲಿ (ಕ್ರಿ.ಪೂ. 150) ಕೆಲವು ಆಕಾರಗಳ ಸಲೆ ಕಂಡುಹಿಡಿಯುವ ವಿಧಾನಗಳನ್ನು ಚರ್ಚಿಸಲಾಗಿದೆ. ಇದರಲ್ಲಿ ವೃತ್ತ ಪರಿಧಿ, ವ್ಯಾಸ ಮತ್ತು ಸಲೆಗಳ ಸೂತ್ರಗಳನ್ನೂ ಜ್ಯಾ, ಕಂಸ, ಶರ ಮುಂತಾದವುಗಳ ಸೂತ್ರಗಳನ್ನೂ ಕೊಡಲಾಗಿದೆ. ಈ ಗ್ರಂಥಕ್ಕೆ ವ್ಯಾಖ್ಯಾನ ಬರೆದ ಸಿದ್ಧಸೇನ ಗಣಿ (ಕ್ರಿ.ಶ. 6ನೆಯ ಶತಮಾನ) ತನ್ನ ಗಣನೆಗಳಲ್ಲಿ ಸೊನ್ನೆಯನ್ನು ಸ್ಪಷ್ಟವಾಗಿ ಉಲ್ಲೇಖಿಸಿದ್ದಾನೆ. ಉಮಾಸ್ವಾತಿ 4h2 - 4dh = -c2 ಎಂಬ ವರ್ಗ ಸಮೀಕರಣದ ಸಾಧನೆಯನ್ನು ರೇಖಾಗಣಿತದ ರೀತಿಯಲ್ಲಿ ಪಡೆದು ಎಂದು ಕೊಟ್ಟಿದ್ದಾನೆ.

ಅನುಯೋಗದ್ವಾರ ಸೂತ್ರದಲ್ಲಿ (ಕ್ರಿ.ಪೂ. 100) ಪ್ರಪಂಚದ ಒಟ್ಟು ಜನಸಂಖ್ಯೆ 296 ಎಂದು ಊಹಿಸಿದೆ. ಈ ಸಂಖ್ಯೆಯನ್ನು ಬಿಡಿಸಿದಾಗ ಇದು 29 ಸ್ಥಾನಗಳನ್ನು ಆಕ್ರಮಿಸುತ್ತದೆಂದೂ ಹೇಳಿದೆ. ಆ ಸಂದರ್ಭದಲ್ಲಿ  ಎಂಬ ಘಾತಾಂಕಗಳ (ಇಂಡಿಸೀಸ್) ನಿಯಮವನ್ನು ತಿಳಿಸಲಾಗಿದೆ.

ಸ್ಥಾನಾಂಗ ಸೂತ್ರದಲ್ಲಿ (ಕ್ರಿ.ಪೂ. 3ನೆಯ ಶತಮಾನ) ಸಂಖ್ಯಾನ (ಗಣಿತ) ಮುಖ್ಯವಾದ ಹತ್ತು ವಿಷಯಗಳನ್ನು ಒಳಗೊಂಡಿರುತ್ತದೆ ಎಂದು ಹೇಳಿದೆ: ಪರಿಕರ್ಮ, ವ್ಯವಹಾರ, ರಜ್ಜು, ರಾಶಿ, ಕಲಾಸವರ್ಣ, ಯಾವತ್‌ತಾವತ್, ವರ್ಗ, ಘನ, ವರ್ಗವರ್ಗ ಮತ್ತು ವಿಕಲ್ಪ. ಯಾವುದೇ ಸಮೀಕರಣದಲ್ಲಿ ಕಂಡುಹಿಡಿಯಬೇಕಾಗಿರುವ ಒಂದು ಸಂಖ್ಯೆಗೆ ಯಾವತ್ ತಾವತ್ ಎಂಬ ಹೆಸರನ್ನು ಮೊತ್ತಮೊದಲಿಗೆ ಬಳಸಿರುವುದು ಈ ಗ್ರಂಥದಲ್ಲಿಯೇ.

ಸೂರ್ಯಪ್ರಜ್ಞಪ್ತಿ ಮತ್ತು ಚಂದ್ರಪ್ರಜ್ಞಪ್ತಿಗಳಲ್ಲಿ ಸೂರ್ಯಚಂದ್ರಾದಿಗಳ ಕಕ್ಷಾ ಸ್ಥಾನಗಳು, ವ್ಯಾಸ ಮುಂತಾದವನ್ನು ತಿಳಿಸಲಾಗಿದೆ. ಈ ಗ್ರಂಥಗಳಲ್ಲಿ ವಿಷಮ ಚಕ್ರವಾಳವನ್ನು (ದೀರ್ಘವೃತ್ತ - ಎಲಿಪ್ಸ್) ಪ್ರಸ್ತಾವಿಸಿರುವುದು ಗಮನಾರ್ಹ. ಸೂರ್ಯಪ್ರಜ್ಞಪ್ತಿಯಲ್ಲಿ ವೇದಾಂಗ ಜ್ಯೋತಿಷದಲ್ಲಿರುವ ವಿಷಯಗಳನ್ನೇ ಚರ್ಚಿಸಲಾಗಿದ್ದು ಅವು ಬಹುಶಃ ಅದೇ ಕಾಲದಲ್ಲಿ ರಚಿಸಲ್ಪಟ್ಟಿರಬೇಕು.

ಈ ಎಲ್ಲ ಪ್ರಾಚೀನ ಜೈನಗ್ರಂಥಗಳೂ ಕ್ರಿಪೂದ ಶತಮಾನಗಳಲ್ಲೇ ರಚಿತವಾದವು. ಆರ್ಯಭಟನ (ಕ್ರಿ.ಶ. 5ನೆಯ ಶತಮಾನ) ಅನಂತರ ಬಂದ ಜೈನ ಗಣಿತಜ್ಞರ ಕೊಡುಗೆಯನ್ನು ಆರ್ಯಭಟನ ಅನುಯಾಯಿಗಳು ಬಹಳಮಟ್ಟಿಗೆ ಗೌರವದಿಂದಲೇ ಕಂಡಿದ್ದಾರೆ. ಆರ್ಯಭಟೀಯದ ಮೇಲೆ ವ್ಯಾಖ್ಯಾನ ಬರೆದ ಮೊದಲನೆಯ ಭಾಸ್ಕರ [೧೩] (ಕ್ರಿ.ಶ. 6 ನೆಯ ಶತಮಾನ) ತನ್ನ ವ್ಯಾಖ್ಯಾನದಲ್ಲಿ ಜೈನರ ಪ್ರಾಕೃತ ಗ್ರಂಥದಿಂದ ಮೂರು ಶ್ಲೋಕಗಳನ್ನು ಉದ್ಧರಿಸಿದ್ದಾನೆ.

ಪೇಷಾವರದ ಬಳಿಯಿರುವ ಐತಿಹಾಸಿಕ ಪ್ರಸಿದ್ಧಿಯ ತಕ್ಷಶಿಲೆಯಿಂದ ಸುಮಾರು 100 ಕಿಮೀ ದೂರದಲ್ಲಿರುವ ಭಕ್ಷಾಳಿ ಎಂಬ ಗ್ರಾಮದಲ್ಲಿ ಮಹತ್ತ್ವಪೂರ್ಣವಾದ ಒಂದು ಹಸ್ತಪ್ರತಿಯನ್ನು 1881ರಲ್ಲಿ ಪತ್ತೆಹಚ್ಚಲಾಯಿತು.[೧೪] ಅದರಲ್ಲಿ 70 ತೊಗಟೆ ಹಾಳೆಗಳಿದ್ದು ಅವುಗಳಲ್ಲಿ ಅತ್ಯುತ್ಕೃಷ್ಟ ಗಣಿತ ಲಿಖಿತವಾಗಿರುವುದು ಕಂಡುಬರುತ್ತದೆ.[೧೫] ಈ ಹಸ್ತಪ್ರತಿ ಕ್ರಿ.ಶ. ಸು 3ನೆಯ ಶತಮಾನದಲ್ಲಿ ಗಾಥಾ ಭಾಷೆಯಲ್ಲಿ ರಚಿಸಲ್ಪಟ್ಟು ಶಾರದಾ ಲಿಪಿಯಲ್ಲಿ ಬರೆಯಲಾಗಿದೆ.

ಭಕ್ಷಾಳಿ ಹಸ್ತಪ್ರತಿಯಲ್ಲಿ ಸಮಾಂತರ ಮತ್ತು ಗುಣೋತ್ತರ ಶ್ರೇಣಿಗಳು, ಸಮೀಕರಣಗಳು, ಒಂದು ಅವರ್ಗ ಸಂಖ್ಯೆಯ (ನಾನ್‌ಸ್ಕ್ವೇರ್ ನಂಬರ್) ವರ್ಗಮೂಲಕ್ಕೆ ಅತಿ ಸಮೀಪದ ಬೆಲೆ ಹೊಂದುವಂತೆ ಪರಿಮೇಯ ಸಂಖ್ಯೆ ಕಂಡುಹಿಡಿಯುವ ವಿಧಾನ ಹಾಗೂ ಇನ್ನಿತರ ಕೆಲವು ಮುಖ್ಯ ಗಣಿತ ವಿಷಯಗಳನ್ನು ಉದಾಹರಣೆ ಸಹಿತ ಚರ್ಚಿಸಲಾಗಿದೆ.

ವರ್ಗಸಮೀಕರಣಗಳಿಗೆ ಸಂಬಂಧಿಸಿದಂತೆ ಒಂದು ಲೆಕ್ಕ ಕೊಟ್ಟು ಅದರಿಂದ ಉಂಟಾಗುವ

ಎಂಬ ಉತ್ತರ ಕೊಡಲಾಗಿದೆ.

ಆರ್ಯಭಟ 1

ಕ್ರಿ.ಶ. 476. ಪ್ರಾಚೀನ ಭಾರತೀಯ ಗಣಿತಜ್ಞ-ಖಗೋಳಜ್ಞರ ಪೈಕಿ ಒಂದನೆಯ ಆರ್ಯಭಟ ಬಹಳ ಶ್ರೇಷ್ಠಮಟ್ಟದವನು. ಗಣಿತದ ಬೆಳೆವಣಿಗೆಗೆ ವೈಜ್ಞಾನಿಕ ಅಡಿಪಾಯವನ್ನು ಹಾಕಿಕೊಟ್ಟವರಲ್ಲಿ ಈತ ಮೊದಲಿಗ. ಇವನನ್ನು ಬೀಜಗಣಿತದ ಪಿತಾಮಹನೆಂದು ಹೇಳುವುದಂಟು. ಈತನ ಹದಿನೈದನೆಯ ಜನ್ಮ ಶತಾಬ್ದಿಯ ಅಂತ್ಯದಲ್ಲಿ 1975 ಏಪ್ರಿಲ್ 19ರಂದು ಭಾರತೀಯ ಕೃತಕ ಉಪಗ್ರಹ ಆರ್ಯಭಟವನ್ನು ಈತನ ಗೌರವಾರ್ಥ ಉಡಾಯಿಸಲಾಯಿತು.[೧೬]

ತನ್ನ ಜನನ 476 ರಲ್ಲಿ ಆಯಿತೆಂದೂ, ಕೃತಿ ಆರ್ಯಭಟೀಯಮ್ 23ನೆಯ ವಯಸ್ಸಿನಲ್ಲಿ (499) ರಚಿತವಾಯಿತೆಂದೂ ಆರ್ಯಭಟ ಹೇಳಿದ್ದಾನೆ. ಈ ಕೃತಿಗೆ ಕುಸುಮಪುರ ಅಥವಾ ಪಾಟಲೀಪುತ್ರ (ಈಗಿನ ಪಾಟ್ನಾ) ನಗರದಲ್ಲಿ ಬಹಳ ಮನ್ನಣೆ ದೊರಕಿತ್ತು. ಆರ್ಯಭಟೀಯಮ್‌ನ ಬಹಳಷ್ಟು ವ್ಯಾಖ್ಯಾನಕಾರರು ಕೇರಳದವರಾದುದರಿಂದಲೂ ಈಗಲೂ ಆ ಪ್ರದೇಶದಲ್ಲಿ ಆರ್ಯಭಟೀಯ ಸಿದ್ಧಾಂತದ ಪ್ರಕಾರ ಗಣಿಸಲ್ಪಡುವ ಪಂಚಾಂಗಕ್ಕೆ ಹೆಚ್ಚು ಮನ್ನಣೆ ಇರುವುದರಿಂದಲೂ ಆರ್ಯಭಟ ಕೇರಳೀಯನಿರಬೇಕೆಂದು ಕೆಲವರ ಮತ.

ಕೊಡುಗೆಗಳು

ಆತನ ಕೆಲವು ಮಹತ್ತ್ವದ ಕೊಡುಗೆಗಳಿವು.

1. ಅಕ್ಷರ ಸಂಖ್ಯಾಕ್ರಮ: ಖಗೋಳವಿಜ್ಞಾನದಲ್ಲಿ ಬರುವ ಬೃಹತ್ಸಂಖ್ಯೆಗಳನ್ನು ಸೂಚಿಸಲು ದಾಶಮಿಕ ಸಂಖ್ಯಾಕ್ರಮ ಅನುಸರಿಸಿ ಅಕ್ಷರಮಾಲೆಯ ವರ್ಣಗಳನ್ನು ಉಪಯೋಗಿಸುವ ಅಕ್ಷರ ಸಂಖ್ಯಾಕ್ರಮವನ್ನು ಪ್ರಯೋಗದಲ್ಲಿ ತಂದಿರುವುದು ಆರ್ಯಭಟನ ಒಂದು ಮುಖ್ಯ ಸಾಧನೆ. ಸಂಖ್ಯೆಗಳನ್ನು ಸೂಚಿಸುವ  ಈ ವರ್ಣಸಮೂಹ ಛಂದೋಬದ್ಧ ಶ್ಲೋಕಗಳಲ್ಲಿ ಸೊಗಸಾಗಿ ಹೊಂದಿಕೊಳ್ಳುತ್ತದೆ.

ಇಲ್ಲಿಯ ಸೂತ್ರವಿದು:

                              ಸ್ವರಾಕ್ಷಗಳು ಸ್ಥಾನಸೂಚಕಗಳುಅ…ಏಕ(100)              ಲ್…ಅರ್ಬುದ (108)ಆ…ದಶಕ(101)              ಲೀ…ವೃಂದ (109)ಇ…ಶತಕ(102)              ಎ …ಖರ್ವ (1010)ಈ…ಸಹಸ್ರ(103)              ಏ …ನಿಖರ್ವ (1011)ಉ…ಅಯುತ(104)              ಒ …ಮಹಾಪದ್ಮ (1012)ಊ…ನಿಯುತ(105)              ಓ …ಶಂಕು (1013)ಋ…ಪ್ರಯುತ(106)              ಐ …ಜಲಧಿ (1014)ೠ…ಕೋಟಿ(107)              ಐಇ…ಅಂತ್ಯ (1015)                                              ಔ        …ಮಧ್ಯ  (1016)                                              ಔಇ…ಪರಾರ್ಧ  (1017)
                        ವರ್ಗೀಯ ವ್ಯಂಜನಾಕ್ಷರಗಳು ಸ್ಥಾನಾನುಗುಣ್ಯ ಸಂಖ್ಯೆಗಳುಕ    …    1ಚ    …    6ಐ…11ತ…16ಪ…21ಖ   …  2ಛ    …  7ಠ…12ಥ…17ಫ…22ಗ    …  3ಜ    …  8ಡ…13ದ…18ಬ…23ಘ   …  4ಝ   …  9ಢ…14ಧ…19ಭ…24ಙ    …  5ಞ    … 10ಣ…15ನ…20ಮ…25
                             ಅವರ್ಗೀಯ ವ್ಯಂಜನಾಕ್ಷರಗಳು ಸ್ಥಾನಾನುಗುಣ್ಯ                                 30ರಿಂದ ತೊಡಗಿ 10ರ ಗುಣಿತಗಳುಯ…30ಲ…50ಶ…70ಸ…90ರ…40ವ…60ಷ…80ಹ…100

ಯಾವುದೇ ಸಂಯುಕ್ತಾಕ್ಷರವನ್ನು ಅದರ ವ್ಯಂಜನ-ಸ್ವರ ಘಟಕಗಳಾಗಿ ವಿಭಜಿಸಿ ವ್ಯಂಜನ ಘಟಕಗಳು ಸೂಚಿಸುವ ಸಂಖ್ಯೆಗಳನ್ನು ಕೂಡಿಸಿ ಸ್ವರಘಟಕ ಸೂಚಿಸುವ ಸ್ಥಾನಸಂಖ್ಯೆಯಿಂದ ಗುಣಿಸುತ್ತೇವೆ:

ಖ್ಯ=(ಖ್+ಯ್) ಅ = (2+30)100 = 32

ಖ್ಯು=(ಖ್ + ಯ್) ಉ= (2+30) 104 =3,20,000

ಘೃ = (ಘ್) ಋ = 4 x 106 = 40,00,000

ಖ್ಯುಘೃ = (ಖ್ + ಯ್) ಉ + (ಫ್) ಋ = 3,20,000 + 40,00,000 = 43,20,000

ಮಖಿ = 25 + ಖ್ (ಇ) = 25 + 2 x 102 = 225

ಖೆ ಚರಿ = 2 x 1011 + 6 + 40 x 102 = 200000004006

ಖ್ರಿ = (ಖ್ + ರ್) ಇ = (2 + 40) x 102 = 4200

ನಕ್ಷತ್ರ = 20 + (ಕ್ + ಷ್) ಅ + (ತ್ +ರ್) ಅ = 20 + 81 + 56 = 157

ಚಂದ್ರ = ಚನ್ದ್ರ = 6 + (ನ್ + ದ್ + ರ) = 6 + 20 + 18 + 40 = 84

2. ನಿಯತಾಂಕ π ಯ ಬೆಲೆ: ಯಾವುದೇ ವೃತ್ತದಲ್ಲಿ, ಅದು ಎಷ್ಟೇ ದೊಡ್ಡದಿರಲಿ, ಅದರ ಪರಿಧಿ ಮತ್ತು ವ್ಯಾಸ ಇವುಗಳ ದಾಮಾಷೆ ಒಂದು ಸ್ಥಿರಸಂಖ್ಯೆ. ಇದನ್ನು π ಎಂಬ ಪ್ರತೀಕದಿಂದ ಸೂಚಿಸುವುದು ವಾಡಿಕೆ.

π ಯ ಬೆಲೆಯನ್ನು 4 ದಶಮಾಂಶ ಸ್ಥಾನದವರೆಗೆ ನಿಖರವಾಗಿರುವಂತೆ (= 3.1416) ಮೊತ್ತಮೊದಲಿಗೆ ಕೊಟ್ಟವನ್ನು ಆರ್ಯಭಟ. ಅವನು ನೀಡಿರುವ ಸೂತ್ರವಿದು: 20,000 ಅಳತೆಯ ವ್ಯಾಸವುಳ್ಳ ವೃತ್ತದ ಆಸನ್ನ (ಹತ್ತಿರದ) ಪರಿಧಿ (ಸುತ್ತಳತೆ) 62.832. ಆರ್ಯಭಟ ಆಸನ್ನ ಅಥವಾ ಸಮೀಪದ ಬೆಲೆ ಎಂದು ಹೇಳಿರುವುದರಿಂದ π ಸ್ಥಿರಾಂಕ ಪರಿಮೇಯ ಸಂಖ್ಯೆ ಅಲ್ಲವೆಂದು ಅವನಿಗೆ ತಿಳಿದಿರಲೇಬೇಕು. ಆತನ ಪ್ರಕಾರ π = (62,832: 20,000)= 3.1416 ಸುಮಾರಾಗಿ.[೧೭]

3. ಜ್ಯಾ ಸಂಖ್ಯೆಗಳೂ ಕೋಷ್ಟಕ: ಗಣಿತದ ಒಂದು ಭಾಗವಾದ ತ್ರಿಕೋಣಮಿತಿಯ ಜ್ಯಾ, ಕೋಟಿಜ್ಯಾ ಮುಂತಾದ ಪ್ರಮಾಣಗಳನ್ನು ಉಲ್ಲೇಖಿಸಿ ಅವನ್ನು ಕಂಡುಹಿಡಿಯುವ ಸೂತ್ರಗಳನ್ನು ಆರ್ಯಭಟ ಕೊಟ್ಟಿದ್ದಾನೆ.

ಪ್ರಾಚೀನ ಭಾರತೀಯ ಗಣಿತದ ಜ್ಯಾ ಪ್ರಮಾಣಕ್ಕೂ ಆಧುನಿಕ ಜ್ಯಾ (ಸೈನ್) ಪ್ರಮಾಣಕ್ಕೂ ವ್ಯಾಖ್ಯೆಯಲ್ಲಿ ಸ್ವಲ್ಪ ವ್ಯತ್ಯಾಸವಿದೆ. ಜ್ಯಾ ಎಂಬ ಶಬ್ದ ಅರಬ್ಬರ ಮೂಲಕ ಪಾಶ್ಚಾತ್ಯ ದೇಶಗಳಿಗೆ ತಲಪಿದಾಗ ಉಚ್ಚಾರಣೆ ಮತ್ತು ಭಾಷಾಂತರಗಳಲ್ಲಿ ವ್ಯತ್ಯಾಸಗಳಾಗಿ ಆಧುನಿಕ ಗಣಿತದ ಸೈನ್ ಅಗಿದೆ.[೧೮]

ವೃತದ ಕಾಲುಭಾಗದ ಪರಿಮಿತಿಯಾದ 900 ಕೋನವನ್ನು ಆರ್ಯಭಟ 24 ಸಮಭಾಗಗಳಾಗಿ ಮಾಡಿ ಬರುವ ಪ್ರತಿ  ಗೂ (ಅಂದರೆ 225 ಕಲೆಗಳಿಗೂ) ಜ್ಯಾ ಸಂಖ್ಯೆ ಕೊಟ್ಟಿದ್ದಾನೆ. ಇವುಗಳ ಪೈಕಿ ಕೆಲವು ಜ್ಯಾ ಸಂಖ್ಯೆಗಳನ್ನು ಆಯ್ದು ಆಧುನಿಕ ಜ್ಯಾ ಸಂಖ್ಯೆಗಳೊಂದಿಗೆ ಹೋಲಿಸಿ ಈ ಕೆಳಗಿನ ಕೋಷ್ಟಕಗಳನ್ನು ತೋರಿಸಿದೆ. ಕ್ರಿ.ಶ. 6ನೆಯ ಶತಮಾನದ ಸೂರ್ಯಸಿದ್ಧಾಂತವೆಂಬ ಖಗೋಳಗ್ರಂಥದಲ್ಲಿಯೂ ಇದೇ ರೀತಿ ಜ್ಯಾ ಸಂಖ್ಯೆಗಳನ್ನು ಕಂಡುಹಿಡಿಯುವ ವಿಧಾನ ಮತ್ತು ಸೂತ್ರ ಕೊಡಲಾಗಿದೆ.[೧೯]

ಕೋನಗಳುಜ್ಯಾ ಸಂಖ್ಯೆಗಳು ಜ್ಯಾಆಧುನಿಕ ಜ್ಯಾ   θ                           θ               (sin θ)x 3438   00    …                  0   …     0  15o     …              890   …    889.82  30o    …              1719   …    1719  45o    …              2431   …    2431.01  75o    …              3321   …    3320.85  90o    …              3438   …    3438

4. ಅನಿರ್ದಿಷ್ಟ ಸಮೀಕರಣಗಳು: ಭಾರತೀಯ ಗಣಿತದ ಇನ್ನೊಂದು ವಿಶಿಷ್ಟ ಕೊಡುಗೆ ax-by=c ಮತ್ತು Nx2+1=y2 ಎಂಬ ಒಂದನೆಯ ಮತ್ತು ಎರಡನೆಯ ಡಿಗ್ರಿಯ ಅನಿರ್ದಿಷ್ಟ ಸಮೀಕರಣಗಳಿಗೆ (ಇಂಡಿಟರ್ಮಿನೆಟ್ ಈಕ್ವೇಷನ್) ಸರಿಹೊಂದುವಂತೆ x ಮತ್ತು y ಗಳಿಗೆ ಪೂರ್ಣಾಂಕ ಬೆಲೆಗಳನ್ನು ಪಡೆಯುವ ವಿಧಾನಗಳ ನಿರೂಪಣೆ. ಇದನ್ನು ಮೊತ್ತಮೊದಲ ಬರಿಗೆ ಚರ್ಚಿಸಿದ್ದು ಭಾರತದಲ್ಲಿಯೇ. ಇವುಗಳ ಪೈಕಿ ಒಂದನೆಯ ಡಿಗ್ರಿ ax-by=c ಮಾದರಿಯ ಸಮೀಕರಣವನ್ನು ಬಿಡಿಸುವ ವಿಧಾನ ಚರ್ಚಿಸಿದಾತ ಆರ್ಯಭಟ.

5. ತ್ರಿಕೋನ, ಚತುರ್ಭುಜ ಮತ್ತು ವೃತ್ತಗಳ ಪ್ರಮೇಯಗಳು:

(i) ತ್ರಿಕೋನದ ಯಾವುದೇ ಒಂದು ಭುಜದ ಅರ್ಧವನ್ನು ಅದರ ಅಭಿಲಂಬದಿಂದ (perpendicular) ಗುಣಿಸಿದರೆ ಅ ತ್ರಿಕೋನದ ಸಲೆ ದೊರೆಯುತ್ತದೆ

ತ್ರಿಭುಜಸ್ಯ ಫಲಶರೀರಂ ಸಮದಲ ಕೋಟೀ ಭುಜಾರ್ಧ ಸಂವರ್ಗಃ[೨೦]

(ii) ಲಂಬಕೋನ ತ್ರಿಕೋನದ ಭುಜಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಆರ್ಯಭಟ ಕೊಟ್ಟ್ಟಿರುವ ಪ್ರಮೇಯ:

ಯಶ್ಚೈವ ಭುಜಾವರ್ಗಃ ಕೋಟೀವರ್ಗಶ್ಚ ಕರ್ಣವರ್ಗಃ ಸಂಃ

ಅಂದರೆ ಲಂಬಕೋನ ತ್ರಿಕೋನ ABC ಯಲ್ಲಿ AB ಭುಜ, BC ಕೋಟಿ, CA ಕರ್ಣವಾಗಿದ್ದರೆ AB2 + BC2 = CA2. ಪೈಥಾಗೊರಸನ ಪ್ರಮೇಯವೆಂದು ಇದು ಆಧುನಿಕ ಗಣಿತವಿದರಿಗೆ ಪರಿಚಿತವಾಗಿದೆ.(iii) ಒಂದು ವೃತ್ತದಲ್ಲಿ AB ಎಂಬ ವ್ಯಾಸಕ್ಕೆ CD ಎಂಬ ಚಾಪವಲಂಬವಾಗಿದ್ದು ಚಿತ್ರದಲ್ಲಿ ಇವು X ಬಿಂದುವಿನಲ್ಲಿ ಸಂಧಿಸಿದರೆ ಆಗ BX.XA=XD2. ಈ ಪ್ರಮೇಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಆರ್ಯಭಟೀಯಮ್ ಶ್ಲೋಕ ಹೀಗಿದೆ:

ವೃತೇ ಶರಸಂವರ್ಗೋsರ್ಧ ಜ್ಯಾವರ್ಗಃ ಸಖಲು ಧನುಷೋಃ

ಶರಗಳ ಗುಣಲಬ್ಧ (BX.XA) ಅರ್ಧ ಜ್ಯಾವರ್ಗಕ್ಕೆ (XD2) ಸಮವೆಂದು ಅರ್ಥ.(iv) ವೃತ್ತದಲ್ಲಿ ಅಂತಃಸ್ಥಿತವಾದ ಷಡ್ಭುಜದ ಒಂದೊಂದು ಭುಜವೂ ವೃತ್ತದ ತ್ರಿಜ್ಯಕ್ಕೆ ಸಮವಾಗಿರುತ್ತದೆ:

ಪರೀಧೇಃ ಷಡ್ಭಾಗ ಜ್ಯಾ ವಿಷ್ಕಂಭಾರ್ದೇನ ಸಾಮ ತುಲ್ಯಾ

(v) ವೃತ್ತಪರಿಧಿಯ ಅರ್ಧವನ್ನು ವ್ಯಾಸದ ಅರ್ಧದಿಂದ ಗುಣಿಸಿದರೆ ವೃತ್ತದ ಸಲೆ ದೊರೆಯುತ್ತದೆ. ಅಂದರೆ ವೃತ್ತಪರಿಧಿ C ಮತ್ತು ವ್ಯಾಸ d ಅಗಿದ್ದರೆ ಸಲೆ  (ಇಲ್ಲಿ r ತ್ರಿಜ್ಯ.)

(vi) ಒಂದನ್ನೊಂದು ಛೇದಿಸುವ ವೃತ್ತಗಳಿಗೆ ಸಂಬಂಧಿಸಿದ ಸಮಸ್ಯೆಗಳು ಖಗೋಳವಿಜ್ಞಾನದಲ್ಲಿ ಬಹಳವಾಗಿ ಉದ್ಭವಿಸುತ್ತವೆ. ವಿಶೇಷವಾಗಿ ಸೂರ್ಯ ಮತ್ತು ಚಂದ್ರ ಗ್ರಹಣಗಳ ಲೆಕ್ಕಗಳಲ್ಲಿ ಇಂಥ ಸಮಸ್ಯೆಗಳಿಗೆ ಸಾಧನೆಗಳು ಕೊಡಲ್ಪಟ್ಟಿವೆ. ಆರ್ಯಭಟ ಈ ಸಮಸ್ಯೆಗಳಿಗೆ ಉತ್ತರ ಕೊಟ್ಟಿದ್ದಾನೆ.

O1 ಮತ್ತು O2 ಎಂಬ ಕೇಂದ್ರವುಳ್ಳ ಎರಡು ವೃತ್ತಗಳು E ಮತ್ತು F ಬಿಂದುಗಳಲ್ಲಿ ಸಂಧಿಸುತ್ತವೆ. ವೃತ್ತಗಳ ವ್ಯಾಸಗಳು AB = d1 ಮತ್ತು CD = d2 ಅಗಿರಲಿ. BC ಗೆ ಗ್ರಾಸವೆಂದೂ ಅದರ ಭಾಗಗಳಾದ CG ಮತ್ತು BG ಗಳಿಗೆ ಸಂಪಾತ ಶರಗಳೆಂದೂ ಹೆಸರು. CG = h1, BG = h2 ಮತ್ತು BC = h ಎಂದು ಸೂಚಿಸಿದರೆ ಆರ್ಯಭಟ ಕೊಟ್ಟಿರುವ ಸೂತ್ರಗಳಿವು:

6. ಶ್ರೇಢೀ (ಶ್ರೇಣಿ) ಗಣಿತ: ಸಮಾಂತರ (ಅಥವಾ ಅಂಕ) ಶ್ರೇಢಿಗೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಕೆಲವು ಸೂತ್ರಗಳನ್ನು ಮೊತ್ತಮೊದಲಿಗೆ ಆರ್ಯಭಟ ಕೊಟ್ಟಿದ್ದಾನೆ. ಒಂದು ಸಮಾಂತರ ಶ್ರೇಣಿಯ ಮೊದಲ ಪದ a, ಕ್ರಮಾನುಗತ ಪದಗಳ ವ್ಯತ್ಯಾಸ d ಮತ್ತು ಪದಗಳ ಸಂಖ್ಯೆ n ಅಗಿದ್ದರೆ, ಆ ಶ್ರೇಣಿಯ ಮೊತ್ತ  . ಒಂದು ವೇಳೆ ಮೊತ್ತ S ಗೊತ್ತಿದ್ದು ಪದಗಳ ಸಂಖ್ಯೆ n ಕಂಡುಹಿಡಿಯಬೇಕಾಗಿದ್ದರೆ ಆಗ ಬಳಸಬೇಕಾದ ಸೂತ್ರ

ಹಾಗೆಯೇ ಸಮಾಂತರ ಶ್ರೇಣಿಯನ್ನು ಆಧರಿಸಿ ಈ ಮುಂದಿನ ಸೂತ್ರಗಳನ್ನು ಆರ್ಯಭಟ ಕೊಟ್ಟಿದ್ದಾನೆ:

(i)

(ii)

(iii)

7. ಭೂಮಿಯ ಆಕಾರ ಮತ್ತು ದೈನಂದಿನ ಆವರ್ತನೆ: ಭೂಮಿ ಗುಂಡಾಗಿದೆ, ಮತ್ತು ಅದು ದಿವಸಕ್ಕೊಮ್ಮೆ ತನ್ನ ಸುತ್ತ ಆವರ್ತಿಸುತ್ತಿರುವುದುರಿಂದ ಸೂರ್ಯೋದಯ, ಸೂರ್ಯಾಸ್ತಗಳು ಸಂಭವಿಸುತ್ತವೆ ಎಂಬ ವೈಜ್ಞಾನಿಕ ಸತ್ಯಗಳನ್ನು ಗೆಲಿಲಿಯೋಗಿಂತ (ಕ್ರಿಶ 1564-1642) ಸಾವಿರದ ಇನ್ನೂರು ವರ್ಷಗಳ ಹಿಂದೆಯೇ ಆರ್ಯಭಟ ಪ್ರತಿಪಾದಿಸಿದ್ದಾನೆ. ಆತ ಈ ಮುಂದಿನವನ್ನು ಸ್ಪಷ್ಟವಾಗಿ ಮೊತ್ತಮೊದಲಿಗೆ ತಿಳಿಸಿದ್ದಾನೆ:

(i) ಭೂಮಿ ಮತ್ತು ಗ್ರಹಗಳು ಸ್ವಯಂಪ್ರಭಾರಹಿತ ಗೋಳಗಳು. ಇವು ಸ್ವಭಾವತಃ ಕಾಂತಿಹೀನವಾಗಿದ್ದರೂ ಸೂರ್ಯಾಭಿಮುಖವಾಗಿರುವ ಅರ್ಧ ಭಾಗಗಳು ತಮ್ಮ ಮೇಲ್ಮೈ ಕ್ಷೇತ್ರಕ್ಕೆ ಅನುಗುಣವಾಗಿ ಸೂರ್ಯ ಕಿರಣಗಳಿಂದ ಪ್ರಕಾಶಿತವಾಗಿ ಉಜ್ಜ್ವಲವಾಗಿ ಕಾಣಬರುತ್ತವೆ.

(ii) ಭೂಮಿ ಎಲ್ಲ ದಿಕ್ಕುಗಳಲ್ಲೂ ಗುಂಡಾಗಿದೆ-ಭುಗೋಲಃ ಸರ್ವತೋ ವೃತ್ತಃ (ಗೋಲಪಾದ 6ನೆಯ ಶ್ಲೋಕ).

(iii) ದೋಣಿಯಲ್ಲಿ ಕುಳಿತು ಪಯಣಿಸುತ್ತಿರುವವನಿಗೆ ದಡದಲ್ಲಿ ಸ್ಥಿರವಾಗಿರುವ ಗಿಡ, ಬಂಡೆ ಮೊದಲಾದವು ವಿರುದ್ಧ ದಿಕ್ಕಿನಲ್ಲಿ ಸಾಗಿ ಹೋಗುತ್ತಿರುವಂತೆ ಭಾಸವಾಗುತ್ತದೆ. ಹಾಗೆಯೇ (ಭೂಮಿ ಎಂಬ ಆಕಾಶನೌಕೆಯಲ್ಲಿ ಕುಳಿತಿರುವ ಮಾನವನಿಗೆ) ನಿಶ್ಚಲವಾಗಿರುವ ನಕ್ಷತ್ರಗಳು ಪೂರ್ವದಿಂದ ಪಶ್ಚಿಮದತ್ತ ಸರಿಯುವಂತೆ ಭಾಸವಾಗುವುದಾಗಿದೆ. (ಅಚಲಾನಿ ಭಾನಿ ತದ್ವತ್ ಸಮಪಶ್ಚಿಮಗಾನಿ).

(iv) ಸೂರ್ಯೋದಯಾಸ್ತಗಳು ಬೇರೆ ಬೇರೆ ಜಾಗಗಳಲ್ಲಿ ಬೇರೆ ಬೇರೆ ಕಾಲಕ್ಕೆ ಉಂಟಾಗುವ ವಿದ್ಯಮಾನವನ್ನು ಆರ್ಯಭಟ ವಿವರಿಸುತ್ತಾನೆ: ಲಂಕೆಯಲ್ಲಿ ಸೂರ್ಯೋದಯವಾಗುವಾಗ ಸಿದ್ಧಪುರದಲ್ಲಿ ಸೂರ್ಯಾಸ್ತವೂ, ಯವ (ಯಮ) ಕೋಟೆಯಲ್ಲಿ ಮಧ್ಯಾಹ್ನವೂ, ರೋಮಕ ಪ್ರದೇಶದಲ್ಲಿ ಅರ್ಧ ರಾತ್ರಿಯೂ ಆಗಿರುತ್ತವೆ.

(v) ಉತ್ತರ ಮತ್ತು ದಕ್ಷಿಣ ಧ್ರುವ (ಅಥವಾ ಸುಮೇರು ಮತ್ತು ಕುಮೇರು) ಪ್ರದೇಶಗಳಲ್ಲಿ 6 ತಿಂಗಳು ಸತತವಾಗಿ ಹಗಲೂ ಉಳಿದ 6 ತಿಂಗಳು ಸತತವಾಗಿ ಇರುಳೂ ಇರುತ್ತವೆ.

ಒಂದನೆಯ ಭಾಸ್ಕರ (ಕ್ರಿಶ 600)

ಆರ್ಯಭಟನ ತರುವಾಯ ಬಂದ ಗಣಿತ-ಖಗೋಳಜ್ಞರಲ್ಲಿ ಈತ ಆರ್ಯಭಟೀಯಮ್ ಗ್ರಂಥಕ್ಕೆ ಬರೆದ ವ್ಯಾಖ್ಯಾನ ಬಹಳ ಪ್ರಖ್ಯಾತಿ ಪಡೆದಿದೆ. ಭಾಸ್ಕರನ ಈ ವ್ಯಾಖ್ಯಾನದಿಂದಲೇ ಮೂಲಗ್ರಂಥವನ್ನು ಅರ್ಥ ಮಾಡಿಕೊಳ್ಳಬೇಕಾಗಿದೆ. ಇವನು ಸೌರಾಷ್ಟ್ರ ಪ್ರದೇಶದ ವಲ್ಲಭಿ ನಗರದಲ್ಲಿದ್ದನೆಂದು ತಿಳಿದುಬರುತ್ತದೆ. ಈತ ರಚಿಸಿದ ಗ್ರಂಥಗಳಿವು: ಮಹಾಭಾಸ್ಕರೀಯ ಎಂಬ ಎಂಟು ಅಧ್ಯಾಯಗಳನ್ನೊಳಗೊಂಡ ಖಗೋಳಗ್ರಂಥ, ಆರ್ಯಭಟೀಯಭಾಷ್ಯ, ಲಘುಭಾಸ್ಕರೀಯ.[೨೧] ಈ ಕೊನೆಯದು ಮಹಾಭಾಸ್ಕರೀಯದ ಸಂಕ್ಷಿಪ್ತ ರೂಪ. ಇದರಲ್ಲಿ ಎಂಟು ಅಧ್ಯಾಯಗಳಿವೆ. ಭಾಸ್ಕರ ಮುಖ್ಯವಾಗಿ ಖಗೋಳಜ್ಞನಾಗಿದ್ದರೂ ಈತನ ಕೃತಿಗಳಲ್ಲಿ ಅನೇಕ ಗಣಿತ ಸಮಸ್ಯೆಗಳನ್ನು ಚರ್ಚಿಸಲಾಗಿದೆ ಹಾಗೂ ಒಳ್ಳೆಯ ಉದಾಹರಣೆಗಳನ್ನೂ ಕೊಡಲಾಗಿದೆ. ಒಂದನೆಯ ಡಿಗ್ರಿಯ ಅನಿರ್ದಿಷ್ಟ ಸಮೀಕರಣ ಬಿಡಿಸಲು ಸಮರ್ಪಕವಾದ ವಿಧಾನವನ್ನು ಉದಾಹರಣೆಗಳ ಸಹಿತ ಮಹಾಭಾಸ್ಕರೀಯದಲ್ಲಿ ಚರ್ಚಿಸಿದ್ದಾನೆ.

ಬ್ರಹ್ಮಗುಪ್ತ (ಏಳನೆಯ ಶತಮಾನ)

ಬ್ರಹ್ಮಗುಪ್ತ ಆತ್ಯುತ್ತಮ ಮಟ್ಟದ ಖಗೋಳಜ್ಞ ಹಾಗೂ ಗಣಿತಜ್ಞ. ಇವನು ಉಜ್ಜಯಿನೀ ನಗರದಲ್ಲಿದ್ದ.[೨೨] ತಂದರೆಯ ಹೆಸರು ಜಿಷ್ಣು. ಶ್ರೀವ್ಯಾಘ್ರಮುಖ ಎಂಬ ಶಕ (ಅಥವಾ ಚಾಪಾ) ರಾಜನ ಕಾಲದಲ್ಲಿ ತನ್ನ ಪ್ರಸಿದ್ಧ ಗ್ರಂಥವಾದ ಬ್ರಹ್ಮಸ್ಫುಟ ಸಿದ್ದಾಂತವನ್ನೂ (628) ಅನಂತರ ಖಂಡಖಾದ್ಯಕ ಎಂಬ ಖಗೋಲ ಗ್ರಂಥವನ್ನೂ (655) ರಚಿಸಿದ. ಇಪ್ಪತ್ತನಾಲ್ಕು ಅಧ್ಯಾಯಗಳಿಂದ ಕೂಡಿದ ಬೃಹದ್ಗ್ರಂಥ ಬ್ರಹ್ಮಸ್ಫುಟ ಸಿದ್ದಾಂತ. ಇದರಲ್ಲಿ ಗಣಿತಾಧ್ಯಾಯ ಮತ್ತು ಕುಟ್ಟಕಾಧ್ಯಾಯ ಎಂಬ ಎರಡು ಮುಖ್ಯ ಅಧ್ಯಾಯಗಳನ್ನು ಶುದ್ಧಗಣಿತಕ್ಕೆ ಸಂಬಂಧಪಟ್ಟವು. ಮೊದಲನೆಯದರಲ್ಲಿ ಮುಖ್ಯವಾಗಿ ಚರ್ಚಿಸಿರುವ ವಿಷಯಗಳೆಂದರೆ ತ್ರಿಕೋನ, ವೃತ್ತಾಂತರ್ಗತ ಚತುರ್ಭುಜ, ವರ್ಗ ಸಮೀಕರಣಗಳು ಹಾಗೂ ಶೂನ್ಯ ಮತ್ತು ಋಣಸಂಖ್ಯೆಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಗಣಿತ ಪರಿಕರ್ಮಗಳು.[೨೩] ಎರಡನೆಯದಲ್ಲಿ ಒಂದನೆಯ ಹಾಗೂ ಎರಡನೆಯ ಡಿಗ್ರಿಯ ಅನಿರ್ದಿಷ್ಟ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸುವ ವಿಧಾನಗಳನ್ನು ಚರ್ಚಿಸಲಾಗಿದೆ. ಸ್ಪಷ್ಟಧಿಕಾರ ಅಧ್ಯಾಯದಲ್ಲಿ ತ್ರಿಕೋಣಮಿತಿಯ ಸೂತ್ರಗಳನ್ನೂ, ಜ್ಯಾಪಟ್ಟಿಗಳನ್ನೂ (ಸೈನ್-ಟೇಬಲ್ಸ್) ಕೊಡಲಾಗಿದೆ.[೨೪][೨೫] ಈತನ ಸಂಸ್ಕೃತ ಗ್ರಂಥಗಳ ಅರೇಬಿಕ್ ಭಾಷಾಂತರಗಳು ಎಂಟನೆಯ ಶತಮಾನದ ಹೊತ್ತಿಗೆ ಅರೇಬಿಯಾ ದೇಶದಲ್ಲಿ ಜನಪ್ರಿಯವಾಗಿದ್ದುವು.

ಚಕ್ರೀಯ ಚತುರ್ಭುಜವೊಂದರ ಭುಜಗಳು a,b,c,d ಮತ್ತು ಇವುಗಳ ಮೊತ್ತ 2s ಆಗಿದ್ದರೆ ಇದರ ಸಲೆ  . ನಾಜೂಕಾದ ಈ ಸೂತ್ರ ಕೊಟ್ಟ ಮೊದಲಿಗೆ ಬ್ರಹ್ಮಗುಪ್ತ. ರೇಖಾಗಣಿತಕ್ಕೆ ಬ್ರಹ್ಮಗುಪ್ತನ ಕೊಡಗೆ ಬಹಳ ಮಹತ್ತ್ವದ್ದು:

(i) ಉದ್ದ ಒಂದು ಪರಿಮೇಯ ಸಂಖ್ಯೆ ಆಗಿರುವ ಬಾಹುಗಳ ಚತುರ್ಭುಜಗಳನ್ನು ಚರ್ಚಿಸಿದವರಲ್ಲಿ ಬ್ರಹ್ಮಗುಪ್ತನೇ ಮೊದಲಿಗ.

(ii) ಚಕ್ರೀಯ ಚತುರ್ಭುಜದ ಬಾಹುಗಳ ಮಾನಗಳನ್ನು ಉಪಯೋಗಿಸಿಕೊಂಡು ಅದರ ಕರ್ಣಗಳನ್ನು ಕಂಡುಹಿಡಿಯುವ ಪ್ರಮೇಯ, ಹಾಗೂ

(iii) ತ್ರಿಕೋನದ ಪರಿವೃತ್ತದ ವ್ಯಾಸಕ್ಕೆ ಸಂಬಂಧಪಟ್ಟ ಪ್ರಮೇಯ.

ಇವು ಬ್ರಹ್ಮಗುಪ್ತನ ಪ್ರಮೇಯಗಳೆಂದು ಪ್ರಸಿದ್ಧವಾಗಿವೆ. Nx2 + 1 = y2 ಎಂಬ ಮಾದರಿಯ ಕ್ಲಿಷ್ಟ ಅನಿರ್ದಿಷ್ಟ ವರ್ಗಸಮೀಕರಣವನ್ನು ಮತ್ತು ಪೂರ್ಣಾಂಕ ಬೆಲೆ ಹೊಂದುವಂತೆ ಬಿಡಿಸುವ ವಿಧಾನವನ್ನು ಮೊತ್ತಮೊದಲಿಗೆ ಚರ್ಚಿಸಿದವ ಬ್ರಹ್ಮಗುಪ್ತ.

ಖಂಡಖಾದ್ಯಕ ಗ್ರಂಥದಲ್ಲಿ ಚ್ಯಾಪಟ್ಟಿ ರಚನೆಯ ವಿಧಾನ ಚರ್ಚಿಸುವ ಸಂದರ್ಭದಲ್ಲಿ ಬ್ರಹ್ಮಗುಪ್ತ ಆಧುನಿಕ ಗಣಿತದ ಅಂತಃಕ್ಷೇಪ (ಇಂಟರ್ಪೊಲೇಷನ್) ಎಂಬ ವಿಧಾನವನ್ನು ಬಹಳ ಸೊಗಸಾಗಿ ಪ್ರಯೋಗಿಸಿದ್ದಾನೆ. ಎರಡನೆಯ ಅಂತರಗಳನ್ನೊಳಗೊಂಡ ಅಂತಃಕ್ಷೇಪೋಕ್ತಿಯನ್ನು ಮೊದಲ ಬಾರಿಗೆ ಪ್ರಯೋಗಿಸಿದಾತ ಬ್ರಹ್ಮಗುಪ್ತ.[೨೬]

ಪೃಥೂದಕ ಸ್ವಾಮಿ (850) ಎಂಬ ಗಣಿತಜ್ಞ ಬ್ರಹ್ಮಗುಪ್ತನ ಬ್ರಹ್ಮಸ್ಫುಟ ಸಿದ್ಧಾಂತಕ್ಕೆ ವ್ಯಾಖ್ಯಾನ ಬರೆದಿರುವನು.[೨೭] ಇದರಲ್ಲಿ ಬಹಳಷ್ಟು ಗಣಿತ ಸಮಸ್ಯೆಗಳಿಗೆ ಒಳ್ಳೆಯ ಉದಾಹರಣೆಗಳನ್ನು ಕೊಡಲಾಗಿದೆ. ರೇಖಾಗಣಿತಕ್ಕೆ ಸಂಬಂಧಪಟ್ಟ ಟಾಲೆಮಿಯ ಪ್ರಮೇಯಕ್ಕೆ ಪೃಥೂದಕ ಸ್ವಾಮಿ ಸಾಧನೆ ಕೊಟ್ಟದ್ದಾನೆ.

ಶ್ರೀಧರಾಚಾರ್ಯ (850)

ಶ್ರೀಧರಾಚಾರ್ಯನ ಪಾಟಿ ಗಣಿತ ಅಥವಾ ತ್ರಿಶತಿಕಾ (300 ಶ್ಲೋಕಗಳಿರುವುದರಿಂದ ಈ ಹೆಸರು) ಸಾಕಷ್ಟು ಗಣಿತ ನಿಯಮಗಳನ್ನೂ ಉದಾಹರಣೆಗಳನ್ನೂ ಒಳಗೊಂಡಿರುವ ಉತ್ಕೃಷ್ಟ ಗಣಿತ ಗ್ರಂಥ.[೨೮] ಈತ ಗಣಿತದ ಪರಿಕರ್ಮಗಳನ್ನಲ್ಲದೆ, ಮುಖ್ಯವಾಗಿ ಸಲೆ, ಸಮಾಂತರ ಹಾಗೂ ಗುಣೋತ್ತರ ಶ್ರೇಣಿಗಳು ಮತ್ತು ಮಿಶ್ರಣಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟ ವಿಧಾನಗಳನ್ನು ಕೂಡ ಚರ್ಚಿಸಿದ್ದಾನೆ. ಶ್ರೀಧರನ ಕೊಡುಗೆ ಎಂದರೆ ax2 + bx + c = 0 ಮಾದರಿಯ ವರ್ಗಸಮೀಕರಣವನ್ನು ವರ್ಗಪೂರ್ಣೀಕರಣ ವಿಧಾನದಿಂದ ಬಿಡಿಸುವುದು. ಗಣಿತದಲ್ಲಿ ಇದು ಶ್ರೀಧರನ ವಿಧಾನವೆಂದೇ ಪ್ರಸಿದ್ಧಿಯಾಗಿದೆ:

ಮಹಾವೀರಾಚಾರ್ಯ (9ನೆಯ ಶತಮಾನ)

ಆರ್ಯಭಟ ಮತ್ತು ಬ್ರಹ್ಮಗುಪ್ತನ ಅನಂತರ ಬಂದ ಗಣಿತಜ್ಞರಲ್ಲಿ ಕರ್ನಾಟಕ ದೇಶದವರಾದ ಮಹಾವೀರ ಮತ್ತು (ಎರಡನೆಯ) ಭಾಸ್ಕರಚಾರ್ಯ ಪ್ರಸಿದ್ಧರು. ಜೈನಮತಸ್ಥನಾದ ಮಹಾವೀರಾಚಾರ್ಯ ರಾಷ್ಟ್ರಕೂಟ ದೊರೆ ಅಮೋಘವರ್ಷ ನೃಪತುಂಗನ (815-878) ಆಸ್ಥಾನದಲ್ಲಿದ್ದ.[೨೯] ದಕ್ಷಿಣ ಭಾರತದ ಇತಿಹಾಸದಲ್ಲಿ ಸಮೃದ್ಧಿ, ರಾಜಕೀಯ ಸ್ಥಿರತೆ, ಮತ್ತು ಸಂಗೀತ, ಸಾಹಿತ್ಯ, ಕಲೆಗಳ ಬೆಳೆವಣಿಗೆ ಉನ್ನತ ಮಟ್ಟದಲ್ಲಿದ್ದ ಕಾಲದಲ್ಲಿ ನೃಪತುಂಗನ ಆಶ್ರಯದಲ್ಲಿ ಬಾಳಿ ಗಣಿತ ಬೆಳಗಿಸಿ ಜನಪ್ರಿಯವಾಗುವಂತೆ ಮಾಡಿದ.

ಮಹಾವೀರನಲ್ಲಿ ಒಬ್ಬ ಸಿದ್ಧ ಗಣಿತಜ್ಞನ ಬುದ್ಧಿ, ತೀಕ್ಷ್ಣತೆ, ಕವಿಯ ರಸಿಕತೆ ಮತ್ತು ಕಲಾವಿದನ ಸೃಜನಾತ್ಮಕ ಕಲ್ಪನೆ ಇವುಗಳ ತ್ರಿವೇಣೀ ಸಂಗಮ ಕಾಣುತ್ತೇವೆ. ಈತನ ಕಾಲದ ತನಕ ಬೆಳೆದು ಬಂದಿದ್ದ ಗಣಿತವನ್ನು ಒಂದೆಡೆಯಲ್ಲೇ ಸಾರಭೂತವಾಗಿ ಸಿಗುವಂತೆ ಮಾಡಿ, ಸ್ವಾರಸ್ಯವಾದ ಮತ್ತು ವೈವಿಧ್ಯಮಯವಾದ ಉದಾಹರಣೆಗಳಿಂದ ಪೋಣಿಸಿದ ಮಹಾವೀರನ ಗಣಿತಸಾರಸಂಗ್ರಹವೆಂಬ ಶುದ್ಧಗಣಿತದ ಗ್ರಂಥ ಮುಖ್ಯವಾಗಿ ದಕ್ಷಿಣ ಭಾರತದಲ್ಲಿ ಬಹಳ ಕಾಲ ಪ್ರಸಿದ್ಧವೂ ಜನಪ್ರಿಯವೂ ಆದ ಪಠ್ಯಗ್ರಂಥವಾಗಿ ಮೆರೆಯಿತು. ಇಂದು ನಮ್ಮ ವಿದ್ಯಾರ್ಥಿಗಳಿಗಾಗಿ ಬರೆಯಲಾಗುತ್ತಿರುವ ಅಂಕಗಣಿತ ಮತ್ತು ಬೀಜಗಣಿತ ಪುಸ್ತಕಗಳಿಗೆ ಮೊದಲನೆಯ ಮಾದರಿ ಗ್ರಂಥ ಈ ಗಣಿತಸಾರ ಸಂಗ್ರಹ. ಅಂಕಗಣಿತದೊಂದಿಗೆ ಬೀಜಗಣಿತ ಮತ್ತು ರೇಖಾಗಣಿತಳಿಗೆ ಸಂಬಂಧಪಟ್ಟ ವಿಷಯಗಳನ್ನೂ ಸೇರಿಸಿ ಬೇರೆ ಬೇರೆ ಪ್ರಕರಣಗಳನ್ನು ಒಟ್ಟು ಒಂಬತ್ತು ಅಧ್ಯಾಯಗಳಾಗಿ ವಿಂಗಡಿಸಿ ಮಹಾವೀರ ಈ ಗ್ರಂಥ ರಚಿಸಿದ್ದಾನೆ. ಈತನ ಕೆಲವು ವಿಶೇಷ ಕೊಡುಗೆಗಳಿವು:

(i) ಮಾಲಾರೂಪದಲ್ಲಿ ಅಂದರೆ ಎಡದಿಂದ ಬಲಕ್ಕೆ ಮತ್ತು ಬಲದಿಂದ ಎಡಕ್ಕೆ ಓದಿದಾಗ ಒಂದೇ ಸಂಖ್ಯೆಯಾಗುವ ಕೆಲವು ಗುಣಾಕಾರಗಳು:

139 x 109 = 15,151

152207 x 73 = 1,11,11,111

14287143 x 7 = 100010001

ಇತ್ಯಾದಿ

(ii) ಒಂದು ಸಂಖ್ಯೆಯ ಘನವನ್ನು (ಕ್ಯೂಬ್) ಕಂಡುಹಿಡಿಯಲು ಈತ ಅನೇಕ ವಿಧಾನಗಳನ್ನು ಸೂಚಿಸಿದ್ದಾನೆ. ಅವು ಶ್ರೇಢೀ ಗಣಿತದ ಮಾದರಿಗಳಾಗಿವೆ:

n + 3n + 5n + ….n ಪದಗಳವರೆಗೆ = n3

n2 + (n-1)[1 + 3 + 5 +….n ಪದಗಳವರೆಗೆ] = n3

3[1.2 + 2.3 + 3.4 +….+(n-1)n] + n = n3

(iii) ಯಾವ ಭಿನ್ನರಾಶಿಯೇ ಆಗಲಿ ಅದನ್ನು 1 ಅಂಶವಾಗಿ (ನ್ಯೂಮರೇಟರ್) ಹೊಂದಿರುವ ಅನೇಕ ಭಿನ್ನರಾಶಿಗಳ ಮೊತ್ತವಾಗಿ ತೋರಿಸುವ ವಿಧಾನ ಮಹಾವೀರನ ವಿಶಿಷ್ಟ ಕೊಡಿಗೆ. ಇವನ್ನು ಆತ ರೂಪಾಂತರ ರಾಶಿ ಎಂದು ಕರೆದಿದ್ದಾನೆ.[೩೦]

(iv) ವಿಕಲ್ಪ (ಅಥವಾ ಭಂಗ): ಪ್ರಸ್ತರಣ ಮತ್ತು ವಿಕಲ್ಪ (ಅಥವಾ ಇಂದಿನ ಪರಿಭಾಷೆಯಲ್ಲಿ ಕ್ರಮಯೋಜನೆ ಮತ್ತು ವಿಕಲ್ಪ - ಪರ್ಮ್ಯುಟೇಷನ್ಸ್, ಮತ್ತು ಕಾಂಬಿನೇಷನ್ಸ್) ಎಂಬ ಗಣಿತಶಾಖೆಗೆ ಜೈನರು ಬಹಳ ಪ್ರಾಶಸ್ತ್ಯ ಕೊಟ್ಟಿದ್ದಾರೆ. n ಪದಾರ್ಥಗಳ ಪೈಕಿ ಒಂದೊಂದು ಬಾರಿಗೆ, r ಪದಾರ್ಥಗಳಂತೆ ಆಯ್ದುಕೊಳ್ಳಬಹುದಾದ ಒಟ್ಟು ಆಯ್ಕೆಗಳ ಸಂಖ್ಯೆಯನ್ನು nCr ಎಂದು ಸೂಚಿಸುತ್ತೇವೆ. ಇದರ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಲು ಸಾರ್ವತ್ರಿಕ ಸೂತ್ರ:

ಈ ಸೂತ್ರವನ್ನು ಮೊದಲಿಗೆ ಕೊಟ್ಟವ ಮಹಾವೀರಾಚಾರ್ಯ. ಸ್ಮಿತ್ ಬರೆದಿರುವ ಪ್ರಸಿದ್ಧ ಗ್ರಂಥ ಹಿಸ್ಟರಿ ಆಫ್ ಮ್ಯಾಥಮ್ಯಾಟಿಕ್ಸ್‌ನಲ್ಲಿ ಹೆರಿಗಾನ್ ಎಂಬಾತ ಇದನ್ನು 1634ರಲ್ಲಿ ಮೊದಲ ಬಾರಿಗೆ ಪ್ರಕಟಿಸಿದ ಎಂದಿದೆ. ವಾಸ್ತವವಾಗಿ ಮಹಾವೀರಾಚಾರ್ಯನಿಗೆ ಈ ಗೌರವ ಸಲ್ಲತಕ್ಕದ್ದು.

(v) ಋಣಸಂಖ್ಯೆಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟ ನಿಯಮಗಳನ್ನು ಮಹಾವೀರ ಸ್ಪಷ್ಟವಾಗಿ ತಿಳಿಸಿದ್ದಾನೆ. ಅಂತೆಯೇ ಶೂನ್ಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದಂತೆ ಆತ ನೀಡಿರುವ ನಿಯಮಗಳು ಆಧುನಿಕ ಚಿಹ್ನೆಗಳಲ್ಲಿ a ± 0 = a ಮತ್ತು a x 0 = 0 ಎಂದಾಗುತ್ತವೆ.

ಯಾವುದೇ ಋಣಸಂಖ್ಯೆಯ ವರ್ಗ ಧನಸಂಖ್ಯೆಯೆ ಆಗುವುದರಿಂದ ಋಣ ಸಂಖ್ಯೆಗೆ ವರ್ಗಮೂಲ ಇರುವುದಿಲ್ಲ ಎಂದು ಮೊದಲಬಾರಿಗೆ ಮಹಾವೀರ ಸ್ಪಷ್ಟಡಿಸಿದ್ದಾನೆ.[೩೧] ಋಣಸಂಖ್ಯೆಯ ವರ್ಗಮೂಲವನ್ನು ಊಹಾ ಸಂಖ್ಯೆ (ಇಮ್ಯಾಜಿನರಿ ನಂಬರ್) ಆಗಿ ಪರಿಗಣಿಸಬಹುದೆಂಬ ಪರಿಕಲ್ಪನೆ ಬಹಳ ಶತಮಾನಗಳ ತರುವಾಯ ಬಂದ ಪಾಶ್ಚಾತ್ಯ ಗಣಿತವಿದರ ಕೊಡುಗೆ.

(vi) ವರ್ಗಸಮೀಕರಣಗಳನ್ನು (ಕ್ವಾಡ್ರಾಟಿಕ್ ಇಕ್ವೇಷ್ಪನ್ಸ್) ಸಾಧಿಸುವ ಬಗ್ಗೆ ವಿವರಿಸುತ್ತ ಸೊಗಸಾದ ಮತ್ತು ಸ್ವಾರಸ್ಯವಾದ ಉದಾಹರಣೆ ಕೊಟ್ಟಿದ್ದಾನೆ. ಅಂತೆಯೇ ಸಮಾಂತರ ಮತ್ತು ಗುಣೋತ್ತರ ಶ್ರೇಣಿಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟ ಸೂತ್ರಗಳನ್ನು ಉದಹಾರಣೆಗಳೊಂದಿಗೆ ಚರ್ಚಿಸಿದ್ದಾನೆ.

(vii) ತ್ರಿಕೋನ, ವೃತ್ತ ಮತ್ತು ಚಕ್ರೀಯ ಚತುರ್ಭುಜಗಳ ಅನೇಕ ಪ್ರಮೇಯಗಳನ್ನು ಚರ್ಚಿಸಿದ್ದಾನೆ. ಅವುಗಳ ಪೈಕಿ ಮುಖ್ಯವಾದದ್ದು ಇದು: ಚಕ್ರೀಯ ಚತುರ್ಭುಜದಲ್ಲಿ ಪೂರ್ಣಾಂಕ ಸಂಖ್ಯೆ ಉದ್ದದ ಭುಜಗಳಿದ್ದು, ಪೂರ್ಣಾಂಕ ಸಂಖ್ಯೆಯ ಸಲೆ ಇರುವ ಚತುರ್ಭುಜದ ಸಾಧನೆ, ಪೂರ್ಣಾಂಕ ಉದ್ದ ಭುಜಗಳಿರುವ ತ್ರಿಭುಜ ಮತ್ತು ಚತುರ್ಭುಜಗಳಿಗೆ ಮಹಾವೀರ ಬಹಳ ಮಹತ್ತ್ವಕೊಟ್ಟು ಜನ್ಯ ವ್ಯವಹಾರ ಎಂಬ ಹೆಸರಿನಿಂದ ಈ ಪ್ರಕರಣವನ್ನು ವಿಶದವಾಗಿಯೂ ಸ್ಪಷ್ಟವಾಗಿಯೂ ಚರ್ಚಿಸಿದ್ದಾನೆ.

(viii) ನಾಲ್ಕು ಸಮ ವೃತ್ತಗಳು ಒಂದನ್ನೊಂದು ಸ್ಪರ್ಶಿಸುವಂತಿದ್ದರೆ, ಆ ವೃತ್ತಗಳ ಮಧ್ಯದಲ್ಲಿದ್ದು ಅವುಗಳಿಂದ ಬಂಧಿತವಾದ ಪ್ರದೇಶದ ಸಲೆ ಗಣಿಸಲು ಹಿಡಿಯಲು ಸೂತ್ರ ಕೊಟ್ಟಿದ್ದಾನೆ.

(ix) ರೇಖಾಗಣಿತಕ್ಕೆ ಸಂಬಂಧಿಸಿದಂತೆ ಮಹಾವೀರನ ಇನ್ನೊಂದು ಕೊಡುಗೆ ಎಂದರೆ ದೀರ್ಘವೃತ್ತದ ಪರಿಧಿ ಮತ್ತು ಸಲೆ ಕೊಡುವ ಸೂತ್ರಗಳು.[೩೨] ದೀರ್ಘವೃತ್ತವನ್ನು ಈತ ಆಯತವೃತ್ತವೆಂದು ಕರೆದ. ಈತನ ಪ್ರಕಾರ ಇದರ ಪರಿಧಿ  . ಇಲ್ಲಿ 2a ಮತ್ತು 2b ಆಯತವೃತ್ತದ ದೀರ್ಘ ಮತ್ತ ಹ್ರಸ್ವ ಅಕ್ಷಗಳು (ಮೇಜರ್ ಆ್ಯಕ್ಸಿಸ್ ಮತ್ತು ಮೈನರ್ ಆ್ಯಕ್ಸಿಸ್). ಒಂದು ವೇಳೆ  ಎಂಬ ಸ್ಥೂಲಬೆಲೆ ತೆಗೆದುಕೊಂಡರೆ ಪರಿಧಿ  ಎಂದಾಗುತ್ತದೆ. ಆಧುನಿಕ ಕೋಷ್ಟಕಗಳಲ್ಲಿ ಕೊಡಲಾಗಿರುವ  ಎಂಬ ಸ್ಥೂಲ ಸೂತ್ರಕ್ಕಿಂತ ಮಹಾವೀರನ ಸೂತ್ರ ಹೆಚ್ಚು ಸಮರ್ಪಕವಾಗಿದೆ.

ಎರಡನೆಯ ಆರ್ಯಭಟ (950)

ಈತ ಬರೆದಿರುವ ಗ್ರಂಥದ ಹೆಸರು ಮಹಾಸಿದ್ಧಾಂತ. ಇದರಲ್ಲಿ ಪಾಟೀ, ಕುಟ್ಟಕ ಮತ್ತು ಬೀಜಗಣಿತಗಳನ್ನು ಬೇರೆ ಬೇರೆಯಾಗಿ ವಿವರಿಸಿದ್ದಾನೆ. ವರ್ಗ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸಲು (ಮೊದಲನೆಯ) ಆರ್ಯಭಟ ಮತ್ತು ಬ್ರಹ್ಮಗುಪ್ತನ ವಿಧಾನಗಳನ್ನೇ ಉಪಯೋಗಿಸಿದ್ದಾನೆ. ಒಂದನೆಯ ಡಿಗ್ರಿಯ ಅನಿರ್ದಿಷ್ಟ ಸಮೀಕರಣಗಳನ್ನು ಬಿಡಿಸಲು ಸುಲಭವಾಗುವಂತೆ ಕೆಲವು ಸಲಹೆಗಳನ್ನು ಸೂಚಿಸಿದ್ದಾನೆ. ಕುಟ್ಟುಕಾಧ್ಯಾಯಕ್ಕೆ ಈತ ಕೊಟ್ಟಿರುವ ವಿಶೇಷ ತಿರುವಿನಿಂದಾಗಿ, ಮುಂದೆ ಬಂದ ಗಣಿತಜ್ಞರು ಈ ವಿಷಯಕ್ಕೆ ಬಹಳ ಮಹತ್ತ್ವ ಕೊಟ್ಟಿದ್ದಾರೆ.

ಶ್ರೀಪತಿ (1039)

ಇವನೊಬ್ಬ ಜೈನ ಖಗೋಳಜ್ಞ ಹಾಗೂ ಗಣಿತಜ್ಞ. ಈತನ ಗಣಿತ ತಿಲಕ ಎಂಬ ಗ್ರಂಥ ಪೂರ್ತಿ ಅಂಕಗಣಿತಕ್ಕೆ ಮೀಸಲು. ಸಿದ್ಧಾಂತಶೇಖರ ಈತನ ಇನ್ನೊಂದು ಗ್ರಂಥ. ಇದು ಮುಖ್ಯವಾಗಿ ಖಗೋಳ ಗ್ರಂಥವಾಗಿದ್ದು, ಇದರ 20 ಅಧ್ಯಾಯಗಳ ಪೈಕಿ ಎರಡು ಅಧ್ಯಾಯಗಳಲ್ಲಿ ಬೀಜಗಣಿತಕ್ಕೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ವ್ಯಕ್ತಗಣಿತ ಮತ್ತು ಅವ್ಯಕ್ತಗಣಿತ ಎಂಬ ವಿಷಯಗಳನ್ನು ಚರ್ಚಿಸಿದ್ದಾನೆ. ಈತ ಬೀಜಗಣಿತ ಎಂಬ ಗ್ರಂಥವನ್ನೂ ರಚಿಸಿದ್ದಾನೆಂದು ತಿಳಿದು ಬಂದಿದೆ. ಆದರೆ ಇದು ಉಪಲಬ್ಧವಿಲ್ಲ.

ಎರಡನೆಯ ಭಾಸ್ಕರಾಚಾರ್ಯ (1114)

ಇವನು ಭಾರತೀಯ ಗಣಿತದ ಚರಿತ್ರೆಯಲ್ಲಿ ಅತ್ಯಂತ ಜನಪ್ರಿಯ ವ್ಯಕ್ತಿ. ಇದರ ಮುಖ್ಯ ಕಾರಣ ಪ್ರಾಯಶಃ ಈತ ರಚಿಸಿರುವ ಲೀಲಾವತೀ. ಈತನ ಜನನ (1114) ಸಹ್ಯಾದ್ರಿ ಪರ್ವತ ಶ್ರೇಣಿಯ ತಪ್ಪಲಿನಲ್ಲಿರುವ ಬಿಜ್ಜಡಬಿಡ ಎಂಬಲ್ಲಿ.

ಅದು ಇಂದಿನ ಬಿಜಾಪುರವೆಂದೂ ಆಗಿನ ಕಾಲದಲ್ಲೂ ಇದು ಕರ್ನಾಟಕದಲ್ಲೇ ಇತ್ತೆಂದೂ ನಂಬಲಾಗಿದೆ.[೩೩] ಇವನ ತಂದೆ ಶಾಂಡಿಲ್ಯ ಗೋತ್ರದ ಮಹೇಶ್ವರೋಪಾಧ್ಯಾಯ.[೩೪] ಈತ ಗಣಿತ ಮತ್ತು ಸಿದ್ಧಾಂತಗಳಲ್ಲಿ ವಿದ್ವಾಂಸ.[೩೫] ಮೂವತ್ತಾರನೆಯ ವಯಸ್ಸಿನಲ್ಲಿ (1150) ಭಾಸ್ಕರ ಸಿದ್ಧಾಂತಶಿರೋಮಣಿ ಎಂಬ ಬೃಹದ್ಗ್ರಂಥ ರಚಿಸಿದ. ಇದರಲ್ಲಿ ಲೀಲಾವತೀ, ಬೀಜಗಣಿತ, ಗ್ರಹಗಣಿತ ಮತ್ತು ಗೋಲಾಧ್ಯಾಯಗಳೆಂಬ ನಾಲ್ಕು ಭಾಗಗಳಿವೆ.[೩೬] ಕಷ್ಟ ಸಮಸ್ಯೆಗಳನ್ನೂ, ಕ್ಲಿಷ್ಟ ಗಣಿತ ನಿಯಮಗಳನ್ನೂ ಅತಿ ಮನೋಹರ ಶ್ಲೋಕಗಳಲ್ಲಿ ಬಹಳ ಸುಲಭ ಉದಾಹರಣೆಗಳ ಮೂಲಕ ಹೃದಯಂಗಮ ಸನ್ನೀವೇಶಗಳನ್ನು ಆಯ್ದು ಲೀಲಾವತಿಯಲ್ಲಿ ವಿವರಿಸಿದ್ದಾನೆ.

ಭಾಸ್ಕರ ನೇರವಾಗಿ ಮಹಾವೀರನನ್ನು ಹೆಸರಿಸದಿದ್ದರೂ ಆತನ ಗಣಿತಸಾರ ಸಂಗ್ರಹದ ಪ್ರಭಾವವನ್ನು ಲೀಲಾವತಿಯಲ್ಲಿ ಕಾಣಬಹುದು.

ಭಾಸ್ಕರನ ಕೊಡುಗೆಗಳಲ್ಲಿ ಮುಖ್ಯವಾದವು ಇವು:

(i) ಕುಟ್ಟಕಾಧ್ಯಾಯ: ಒಂದನೆಯ ಮತ್ತು ಎರಡನೆಯ ಡಿಗ್ರಿ ಅನಿರ್ದಿಷ್ಟ ಸಮೀಕರಣಗಳನ್ನು ಪೂರ್ಣಾಂಕಗಳಲ್ಲಿ ಬಿಡಿಸುವುದು. ಬ್ರಹ್ಮಗುಪ್ತನ ವಿಧಾನ ಸುಧಾರಿಸಿ ಭಾಸ್ಕರಾಚಾರ್ಯ ಚಕ್ರವಾಳ (ಸೈಕ್ಲಿಕ್) ವಿಧಾನ ನೀಡಿದ್ದಾನೆ.[೩೭] ಖ್ಯಾತ ಫ್ರೆಂಚ್ ಗಣಿತಜ್ಞ ಫರ್ಮಾ ತನ್ನ ಗಣಿತ ಮಿತ್ರ ಫ್ರೆನಿಕಲ್ ಎಂಬಾತನಿಗೆ 61x2+1 = y2 ಎಂಬ ಸಮೀಕರಣವನ್ನು x ಮತ್ತು y ಪೂರ್ಣಾಂಕಗಳಾಗುವಂತೆ ಬಿಡಿಸಲು ಸವಾಲು ಹಾಕಿದ (1657). ಇಬ್ಬರೂ ಈ ಸಮೀಕರಣವನ್ನು ಬಿಡಿಸಿದ್ದಾರೆ. ಖ್ಯಾತ ಗಣಿತಜ್ಞ ಆಯಿಲರ್ ಪೂರ್ಣ ಉತ್ತರ ಕೊಟ್ಟಿದ್ದಾನೆ (1732). ಆದರೆ, ಕಾಕತಾಳೀಯವಾಗಿ ಇದೇ ಸಮೀಕರಣವನ್ನು ಭಾಸ್ಕರ 500 ವರ್ಷಗಳಷ್ಟು ಹಿಂದೆಯೇ ಚಕ್ರವಾಳ ವಿಧಾನದಿಂದ ಸಾಧಿಸಿ ಸಿದ್ಧಾಂತ ಶಿರೋಮಣಿಯಲ್ಲಿ ಉಲ್ಲೇಖಿಸಿದ್ದಾನೆ.[೩೮] 61x2+1 = y2 ಸಮೀಕರಣ ಸರಿಹೊಂದುವಂತೆ ಅತಿ ಕನಿಷ್ಠ ಪೂರ್ಣಾಂಕ ಬೆಲೆಗಳು x = 226153980 ಮತ್ತು y = 1766319049 ಎಂಬುದಾಗಿ ಭಾಸ್ಕರ ಬರೆದಿರುವನು.[೩೯]

(ii) ಶೂನ್ಯ ಮತ್ತು ಅನಂತ: ಶೂನ್ಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದಂತೆ a ± 0 = a ಮತ್ತು a x 0 = 0 ಎಂಬ ಸೂತ್ರಗಳನ್ನು ಉದಾಹರಣೆಗಳೊಂದಿಗೆ ಸ್ಪಷ್ಟ ಪಡಿಸಿರುವುದಲ್ಲದೆ, ಅನಂತದ (ಇನ್ಫಿನಿಟಿ) ಗಣಿತ ಪರಿಕಲ್ಪನೆಯನ್ನು ಸ್ಪುಟವಾಗಿಸಿದ್ದಾನೆ ಕೂಡ. ಯಾವುದೇ ಅಶೂನ್ಯ ಸಂಖ್ಯೆಯನ್ನು ಶೂನ್ಯದಿಂದ ಭಾಗಿಸಿದರೆ ಭಾಗಲಬ್ಧ ಅನಂತವಾಗುತ್ತದೆ ಎಂಬುದನ್ನು ಭಾಸ್ಕರ ಸ್ಪಷ್ಟ ಪಡಿಸಿದ್ದಾನೆ. ಅನಂತವನ್ನು ಈತ ಖಹರವೆಂದು ಕರೆದಿದ್ದಾನೆ. ಅನಂತದ ಪರಿಕಲ್ಪನೆ ಪ್ರಾಚೀನ ಭಾರತೀಯರಿಗೆ ತಿಳಿದಿದ್ದರೂ ಅದಕ್ಕೆ ಒಂದು ಸ್ಪಷ್ಟರೂಪ ಕೊಟ್ಟವರಲ್ಲಿ ಭಾಸ್ಕರನೇ ಮೊದಲಿಗ.

(iii) ಕಲನಶಾಸ್ತ್ರ (ಕ್ಯಾಲ್ಕುಲಸ್): ನ್ಯೂಟನ್ ಮತ್ತು ಲೈಪ್ನಿಟ್ಸರಿಗಿಂತ ಐನೂರು ವರ್ಷಗಳ ಹಿಂದೆಯೇ ಗ್ರಹಗಣಿತಕ್ಕೆ ಅವಶ್ಯವಾದಂತೆ ಕಲನಶಾಸ್ತ್ರಕ್ಕೆ ಬುನಾದಿ ಹಾಕಿದವ ಭಾಸ್ಕರ. ಇದಕ್ಕೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ಈತ ಕೊಟ್ಟಿರುವ ಎರಡು ಮುಖ್ಯ ಪ್ರಮೇಯಗಳಿವು:

(a) ಗರಿಷ್ಠ ಬಿಂದುವಿನಲ್ಲಿ (ಪಯಿಂಟ್ ಅಫ್ ಮ್ಯಾಗ್ಸಿಮಾ) ಅವಕಲನಾಂಕ (ಡೆರಿವೇಟೆವ್) ಶೂನ್ಯವಾಗಿರುತ್ತದೆ:[೪೦]

(b) d(sin x) = cos x dx

(iv) ರೇಖಾಗಣಿತಕ್ಕೆ ಸಂಬಂಧಪಟ್ಟಂತೆ ತ್ರಿಕೋನ, ವೃತ್ತ ಮತ್ತು ಚತುರ್ಭುಜಗಳನ್ನೂ ಕೆಲವು ಘನಾಕೃತಿಗಳನ್ನೂ ಭಾಸ್ಕರ ಚರ್ಚಿಸಿದ್ದಾನೆ. ಈತ ಕೊಟ್ಟಿರುವ ನಿಯಮ ಮತ್ತು ಉದಾಹರಣೆಗಳಲ್ಲಿ ಆರ್ಯಭಟ. ಬ್ರಹ್ಮಗುಪ್ತ, ಶ್ರೀಧರ ಮತ್ತು ಮಹಾವೀರಾಚಾರ್ಯರ ಪ್ರಭಾವ ಕಾಣಬಹುದು. ಆದರೆ ಅನೇಕ ಸಂದರ್ಭಗಳಲ್ಲಿ ಹಳೆಯ ವಿಧಾನಗಳನ್ನು ಸುಧಾರಿಸಿ ಇನ್ನೂ ಸುಲಭ ಸೂತ್ರಗಳನ್ನು ಕೊಟ್ಟಿದ್ದಾನೆ.

ಭಾಸ್ಕರಾಚಾರ್ಯನ ತರುವಾಯ

ಹನ್ನೆರಡನೆಯ ಶತಮಾನಂತರ ಐತಿಹಾಸಿಕ ಕಾರಣಗಳಿಂದ, ಭಾರತೀಯ ಗಣಿತ ಅಷ್ಟು ಸಮರ್ಪಕವಾಗಿ ಬೆಳೆಯಲಿಲ್ಲ. ಹಾಗಿದ್ದಾಗ್ಯೂ ಪ್ರಾಚೀನ ಸಂಪ್ರದಾಯದಿಂದ ಸ್ವಲ್ಪಮಟ್ಟಿಗೆ ಬೇರ್ಪಟ್ಟು, ಆಧುನಿಕ (ಅಥವಾ ಸಮಾಕಲೀನ ಪಾಶ್ಚಾತ್ಯ) ಗಣಿತಕ್ಕೆ ಹೋಲುವಂಥ ಬೆಳೆವಣಿಗೆಯನ್ನು ವಿಶೇಷವಾಗಿ ಕೇರಳದ ಗಣಿತಜ್ಞ-ಖಗೋಳಜ್ಞರಲ್ಲಿ ಕಾಣುತ್ತೇವೆ. π ಸಂಖ್ಯೆಯನ್ನು ಕೊಡುವಂಥ ಅನೇಕ ಅನಂತಶ್ರೇಣಿಗಳನ್ನು (ಇನ್ಛಿನಿಟ್ ಸೀರೀಸ್) ಕೊಟ್ಟಿದ್ದಾರೆ. ಪಾಶ್ಚಾತ್ಯರಲ್ಲಿ ಈ ಬೆಳೆವಣಿಗೆ ಆಗುವ ಮೊದಲೇ, ತ್ರಿಕೋನಮಿತಿ ಮತ್ತು ಅನಂತಶ್ರೇಣಿಗಳ ಗುಣಗಳನ್ನು ಚರ್ಚಿಸಿರುವ ಕೀರ್ತಿ ಕೇರಳದ ಗಣಿತಜ್ಞರದು. ಇವರಲ್ಲಿ ಮುಖ್ಯರಾದವರು ಮಾಧವ (1400), ಪರಮೇಶ್ವರ (1430), ನೀಲಕಂಠ ಸೋಮಯಾಜಿ ಮೊದಲಾದವರು.

ಇದನ್ನೂ ನೋಡಿ

ಉದ್ಧರಣಗಳು

ಉಲ್ಲೇಖಗಳು

  • Plofker, Kim (2007). "Mathematics in India". In Katz, Victor J (ed.). The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. Princeton University Press. ISBN 978-0-691-11485-9.
  • Plofker, Kim (2009), Mathematics in India: 500 BCE–1800 CE, Princeton, NJ: Princeton University Press, ISBN 978-0-691-12067-6.
  • Ifrah, Georges (2000). A Universal History of Numbers: From Prehistory to Computers. New York: Wiley. ISBN 0471393401.
  • Bourbaki, Nicolas (1998), Elements of the History of Mathematics, Berlin, Heidelberg, and New York: Springer-Verlag, 301 pages, ISBN 978-3-540-64767-6.
  • Hayashi, Takao (2005), "Indian Mathematics", in Flood, Gavin (ed.), The Blackwell Companion to Hinduism, Oxford: Basil Blackwell, 616 pages, pp. 360–375, pp. 360–375, ISBN 978-1-4051-3251-0.
  • Thibaut, George (1875). "On the Śulvasútras". The Journal of the Asiatic Society of Bengal. 44: 227–275.
  • Cooke, Roger (2005) [First published 1997]. The History of Mathematics: A Brief Course. Wiley-Interscience. ISBN 0-471-44459-6.
  • Keller, Agathe (2006a), Expounding the Mathematical Seed. Vol. 1: The Translation: A Translation of Bhāskara I on the Mathematical Chapter of the Aryabhatiya, Basel, Boston, and Berlin: Birkhäuser Verlag, 172 pages, ISBN 3-7643-7291-5.
  • Gupta, Radha Charan (2008), "Brahmagupta", in Selin, Helaine (ed.), Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, Springer, pp. 162–163, ISBN 978-1-4020-4559-2
  • Joseph, George G. (2000), The Crest of the Peacock, Princeton University Press, ISBN 0-691-00659-8
  • Pottage, John (1974), "The mensuration of quadrilaterals and the generation of Pythagorean triads: a mathematical, heuristical and historical study with special reference to Brahmagupta's rules", Archive for History of Exact Sciences, 12 (4): 299–354, doi:10.1007/BF01307176, MR 0465678
  • Gupta, Radha Charan (2008). "Śrīdhara". In Selin, Helaine (ed.). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures (2nd ed.). Springer. pp. 2017–2018. doi:10.1007/978-1-4020-4425-0_9294.
  • Puttaswamy, T.K (2012), Mathematical Achievements of Pre-modern Indian Mathematicians, Newnes, ISBN 978-0-12-397938-4
  • Kusuba, Takanori (2004), "Indian Rules for the Decomposition of Fractions", in Charles Burnett; Jan P. Hogendijk; Kim Plofker; et al. (eds.), Studies in the History of the Exact Sciences in Honour of David Pingree, Brill, ISBN 9004132023, ISSN 0169-8729
  • Krebs, Robert E. (2004), Groundbreaking Scientific Experiments, Inventions, and Discoveries of the Middle Ages and the Renaissance, Greenwood Publishing Group, ISBN 978-0-313-32433-8
  • Pingree, David Edwin (1970), Census of the Exact Sciences in Sanskrit, vol. 146, American Philosophical Society, ISBN 9780871691460
  • Poulose, K. G. (1991), K. G. Poulose (ed.), Scientific heritage of India, mathematics, Ravivarma Samskr̥ta granthāvali, vol. 22, Govt. Sanskrit College (Tripunithura, India)
  • Stillwell, John (2002), Mathematics and its history, Undergraduate Texts in Mathematics, Springer, ISBN 978-0-387-95336-6
  • Shukla, Kripa Shankar (1984), "Use of Calculus in Hindu Mathematics", Indian Journal of History of Science, 19: 95–104

ಹೊರಗಿನ ಕೊಂಡಿಗಳು


🔥 Top keywords: ಕುವೆಂಪುದರ್ಶನ್ ತೂಗುದೀಪ್ಮುಖ್ಯ ಪುಟದ.ರಾ.ಬೇಂದ್ರೆಶಿವರಾಮ ಕಾರಂತಜಿ.ಎಸ್.ಶಿವರುದ್ರಪ್ಪಸಹಾಯ:ಲಿಪ್ಯಂತರಜ್ಞಾನಪೀಠ ಪ್ರಶಸ್ತಿ ಪುರಸ್ಕೃತ ಕನ್ನಡಿಗರುವಿಶೇಷ:Searchಚಂದ್ರಶೇಖರ ಕಂಬಾರಬಕ್ರೀದ್ಕನ್ನಡಮಾಸ್ತಿ ವೆಂಕಟೇಶ ಅಯ್ಯಂಗಾರ್ಗಾದೆಗೌತಮ ಬುದ್ಧಕನ್ನಡ ಅಕ್ಷರಮಾಲೆಯು.ಆರ್.ಅನಂತಮೂರ್ತಿಬಸವೇಶ್ವರಪೂರ್ಣಚಂದ್ರ ತೇಜಸ್ವಿಗೋವಿಂದ ಪೈವಿನಾಯಕ ಕೃಷ್ಣ ಗೋಕಾಕಗಿರೀಶ್ ಕಾರ್ನಾಡ್ಭಾರತದ ರಾಷ್ಟ್ರಪತಿಗಳ ಪಟ್ಟಿಕನ್ನಡ ಸಂಧಿಪುರಂದರದಾಸಭಾರತದ ಸಂವಿಧಾನಭಾರತದ ರಾಜ್ಯಗಳು ಮತ್ತು ಕೇಂದ್ರಾಡಳಿತ ಪ್ರದೇಶಗಳುಬಿ. ಆರ್. ಅಂಬೇಡ್ಕರ್ಗುಡಿಸಲು ಕೈಗಾರಿಕೆಗಳುಕನ್ನಡ ಗುಣಿತಾಕ್ಷರಗಳುಎ.ಪಿ.ಜೆ.ಅಬ್ದುಲ್ ಕಲಾಂನಾಲ್ವಡಿ ಕೃಷ್ಣರಾಜ ಒಡೆಯರುಕರ್ನಾಟಕಮಹಾತ್ಮ ಗಾಂಧಿಪಂಪಕನ್ನಡ ಸಾಹಿತ್ಯಮೋಕ್ಷಗುಂಡಂ ವಿಶ್ವೇಶ್ವರಯ್ಯಅಕ್ಕಮಹಾದೇವಿಭಾರತದ ಪ್ರಧಾನ ಮಂತ್ರಿಗಳ ಪಟ್ಟಿ