行列の階数

行列の最も基本的な特性数

線型代数学における行列階数(かいすう、rank; ランク)は、行列の最も基本的な特性数 (characteristic) の一つで、その行列が表す線型方程式系および線型変換がどのくらい「非退化」であるかを示すものである。行列の階数を定義する方法は同値なものがいくつもある。

例えば、行列 A の階数 rank(A)(あるいは rk(A) または丸括弧を落として rank A)は、A列空間(列ベクトルの張るベクトル空間)の次元[1]に等しく、また A行空間の次元[2]とも等しい。行列の階数は、対応する線型写像の階数である。

行列の階数の概念はジェームス・ジョセフ・シルベスターが考えた[3]

定義

任意の行列 A について、以下はいずれも同値である。

  • A の列ベクトルの線型独立なものの最大個数(A の列空間の次元)
  • A の行ベクトルの線型独立なものの最大個数(A の行空間の次元)
  • A基本変形を施して階段行列 B を得たとする。このときの B の零ベクトルでない行(または列)の個数(階段の段数とも表現される)
  • 表現行列 A線型写像の像空間の次元。詳しくは#線型写像の階数を参照。
  • A の 0 でないような小行列式の最大サイズ
  • A特異値の数

文献により、上記の条件のいずれかを以って行列 A の階数は定義される。

注意

いま A の列空間の次元を「列階数」、行空間の次元を「行階数」と呼べば、線型代数学における基本的な結果の一つとして、列階数と行階数は常に一致するという事実が成立するから、それらを単に A の階数と呼ぶことができる。これについて、Wardlaw (2005)[4] はベクトルの線型結合の基本性質に基づく四文証明を与えた(これは任意の上で有効である)。また、Mackiw (1995) [2]実数体上の行列に対して有効な、直交性を用いたエレガントな別証明を与えている。両証明とも教科書 Banerjee & Roy (2014) [5]に出ている。

性質

Am × n 行列とする。また、 f を表現行列 A の線型写像とする。

一般の体上

  • m × n 行列の階数は非負整数で、m, n の何れも超えない。すなわち rank(A) ≤ min(m, n) が成り立つ。特に rank(A) = min(m, n) のとき、A最大階数full rank; フルランク; 充足階数、完全階数)を持つとかフルランク行列などといい、さもなくばA階数落ち英語版 (rank deficient; 階数不足) であるという。
  • A零行列のときかつその時に限り rank(A) = 0.
  • f単射となるための必要十分条件は、rank(A) = n(これを A列充足階数を持つという)となることである。
  • f全射となるための必要十分条件は、rank(A) = m となる(A行充足階数を持つ)ことである。
  • A正方行列(つまり m = n)のとき、A正則であるための必要十分条件は、rank(A) = nA が充足階数)となることである。
  • B を任意の n × k 行列として rank(AB) ≤ min(rank(A), rank(B)) が成り立つ。
    • B が行充足階数 n × k 行列ならば rank(AB) = rank(A) が成り立つ。
    • C が列充足階数 l × m 行列ならば rank(CA) = rank(A) が成り立つ。
  • rank(A) = r となるための必要十分条件は、m × m 正則行列 Xn × n 正則行列 Y が存在して が成立することである。ただし Irr × r 単位行列である。右辺の行列は A階数標準形と呼ばれる。
  • rank(A) = rank(A)A転置行列
  • 階数・退化次数の定理が成立
シルベスターの階数不等式
m × n 行列 An × k 行列 B に対し が成り立つ。[注釈 1]
フロベニウスの不等式
行列の積 A, ABC, BC がいずれも定義されるとき、 が成り立つ。[注釈 2]
劣加法性
A, B は同じ型の行列として が成り立つ。この帰結として、階数 k の行列は階数 1 の行列 k 個の和に書くことができ、また k 個より少ない階数 1-行列の和には書けない。

特定の体上

  • A実数体上の行列であるとき、A の階数は対応するグラム行列の階数に等しい。すなわち、実行列 A に対し が成り立つ。これは各々の核空間が等しいことを見れば示される。グラム行列の核は AAx = 0 となるベクトル x からなる。このときさらに 0 = xAAx = |Ax|2 も成り立つ[6]
  • A複素数体上の行列であるとき、A の複素共軛行列を A, 共軛転置行列A* と書けば、 が成り立つ。

階数の計算

例えば、行列

は、基本変形を行うことによって

と書けるから、M の階数は rank M = 2 である。実際、[第 2 行] = [第 1 行] + [第 3 行] であるから、2 行目の行ベクトルは線型独立でない。ここで、1 行目と 3行目は明らかに線型独立であるから、rank M = 2 である。

浮動小数点を用いたコンピューター上の数値計算においては、この基本変形を用いたりLU分解を用いることで階数を求める方法は、精度が落ちることもあり用いられない。替わりに、特異値分解(SVD)やQR分解を用いて求められる。

線型写像の階数

V, W をベクトル空間とし、線型写像 f: VW が与えられたとき、f の像 f(V) の次元を線型写像 f階数と呼び、rk frank f などで表す。VW は一般に無限次元であっても、像の次元 dim f(V) が有限であれば線型写像の階数の概念は意味を持つ。とくに階数有限なる線型写像にはトレースが定義できて、古典群の表現論などで重要な役割を果たす。

VW が有限次元ならば、行列表現によって f は表現行列 Af の共軛類が対応する。このとき、線型写像の階数と行列の階数との間には rank f = rank Af という関係が成り立つが、行列の階数が正則行列を掛けることに関して不変であることから、この等式の成立は表現行列 Af のとり方に依らない。

ベクトル空間 V, W に対して Vn 次元とすれば、線型写像 f: VW の階数は n 以下である。実際に、rank f = n となるとき、線型写像 f非退化(ひたいか、non-degenerate, full rank)であるという。そうでないときには、像 f(V)f0 へ写される元の分だけ「つぶれている」と考えられ、線型写像 f

の次元 dim ker ff退化次数と呼ぶ。f の退化次数を nl fnull f などで表すことがある。次の公式

が成立し、階数と退化次数の関係式あるいは簡単に階数・退化次数公式などと呼ばれる。

脚注

注釈

出典

外部リンク