Proteaszóma

A proteaszómák szükségtelen vagy hibás fehérjéket peptidkötést bontó proteolízissel bontó fehérjekomplexek. Az e reakciókat segítő enzimek a proteázok.

Az PDB: 1fnt proteaszóma. Aktív helyei a hengerben (kék) vannak. A szabályzó részecskék (piros, itt 11S) szabályozzák a bemenetet a fehérjebontás helyére.
Az 1fnt proteaszóma felülnézete.

A proteaszómák a sejtek fehérjekoncentráció-szabályzó és hibásfehérje-bontó mechanizmusát alkotják. A lebontásra jelölt fehérjékre ubikvitin kerül. E reakciót az ubikvitin-ligázok katalizálják. A fehérjére kerülő első ubikvitin jelzi a többi ligáznak, hogy további ubikvitineket helyezzen el a fehérjére. Így poliubikvitin-lánc jön létre, melyet megköt a proteaszóma, lehetővé téve a jelölt fehérje lebontását.[1] Ez 7–8 aminosavas peptideket hoz létre, melyek tovább bonthatók rövidebb aminosav-sorozatokra, illetve felhasználhatók új fehérjék szintézisére.[1]

A proteaszómák minden eukariótában és archeában, valamint néhány baktériumban megtalálhatók. Az eukariótákban a sejtmagban és a citoplazmában is találhatók proteaszómák.[2]

A proteaszóma hengeres komplex 4 egymásra illesztett gyűrűből álló központi pórust tartalmazó maggal. Minden gyűrű 7 fehérjéből áll. A két belső gyűrű 7 β-alegységből áll, 3–7 proteáz aktív helyével. Ezek a gyűrűk belső felszínén találhatók, így a célfehérjének előbb a központi pórusba kell kerülnie lebontás előtt. A két külső gyűrű 7 α-alegységből áll, melyek kaput képeznek, melyen keresztül a hengerbe kerülnek a fehérjék. Ezen alegységeket a szabályzó elemekhez való kötés irányítja, melyek a poliubikvitin-jelet ismerik fel a fehérjeszubsztrátokban, és elindítják a bontást. Az ubikvitináció és proteaszomális bontás rendszere az ubikvitin-proteaszóma rendszer.[3]

A proteaszomális bomlás a sejtben sok folyamathoz szükséges, például a sejtciklushoz, a génexpresszió szabályzásához és az oxidatív stresszre adott válaszokhoz. Fontosságát 2004-ben kémiai Nobel-díjjal ismerték el, melyet Aaron Ciechanover, Avram Hersko és Irwin Rose kapott.[4]

Felfedezés

Az ubikvitin-proteaszóma rendszer felfedezése előtt a fehérjebontást főleg a membránnal határolt, savakkal és az exogén fehérjéket és az idős vagy sérült sejtszervecskéket lebontó és újrahasznosító proteázokkal rendelkező lizoszómáknak tulajdonították.[1] Azonban Joseph Etlinger és Alfred L. Goldberg lizoszómák nélküli retikulocitákban történő ATP-dependens fehérjebontásról szóló 1977-es munkája egy másik sejten belüli bontási mechanizmus jelenlétét feltételezte.[5] Erről 1978-ban kimutatták, hogy több különböző fehérjeláncból áll, mely újdonságnak számított az akkor ismert proteázok közt.[6] A hisztonok módosításáról szóló későbbi munkákban kovalens hisztonmódosításról számoltak be a hiszton lizinje és az akkor nem ismert funkciójú ubikvitin glicinje közt.[7] 2005-ben felfedezték, hogy egy korábban proteolízissel összefüggőnek tekintett fehérje, az ATP-dependens proteolízis-faktor 1 (APF-1) azonos az ubikvitinnel.[8] E rendszer proteolitikus aktivitását többfehérjés komplexként azonosították, melyet eredetileg Sherwin Wilk és Marion Orlowski multikatalitikus proteinázkomplexnek nevezett.[9] Később felfedezték az ATP-dependens proteolitikus komplexet, mely az ubikvitindependens fehérjebontásért felel, és elnevezték 26S proteaszómának.[10][11]

Az ubikvitin-proteaszóma rendszer felfedezését lehetővé tevő munka nagy része az 1970-es évek végén és az 1980-as évek elején történt a Technionban Avram Hersko laboratóriumában, ahol Aaron Ciechanover hallgatóként dolgozott. Több éves munkássága Irwin Rose laboratóriumában a Fox Chase Rákközpontban fontos információkat nyújtott, azonban Rose később a felfedezésében játszott szerepét kisebbnek gondolta.[12] Hármuk megosztva kapta a 2004-es kémiai Nobel-díjat a rendszer felfedezéséért.[4]

Bár elektron-mikroszkópiai adatok a proteaszómák halmozott gyűrűs szerkezetét az 1980-as évek közepén igazolták,[13] a proteaszómamag szerkezetét röntgenkrisztallográfiai úton csak 1994-ben határozták meg.[14] 2018-ban a humán 26S proteaszóma holoenzim és a poliubikvitinált fehérjeszubsztrát rendszerének szerkezetét krioelektron-mikroszkópia révén határozták meg, felfedve a szubsztrát felismerésének, dezubikvitilációjának és bontásának módját.[15]

Szerkezet és elrendezés

A 20S proteaszóma szerkezete oldalnézetből. Az α-alegységek zölddel, a β-alegységek kékkel jelölve.

A proteaszóma részeit gyakran Svedberg-szedimentációsegyütthatója (S) alapján nevezik. A leggyakoribb proteaszóma emlősökben a citoszol-26S proteaszóma, melynek molekulatömege mintegy 2000 kDa, egy 20S fehérje- és két 19S szabályzóegységgel. Magja üreges, a fehérjebontáshoz zárt helyet biztosít, a mag két végén lévő nyílások lehetővé teszik a fehérje bekerülését. A mag részei egy több ATPáz-aktív- és ubikvitinkötő hellyel rendelkező 19S szabályzóegységgel asszociálnak, ez teszi lehetővé a poliubikvitinált fehérjék felismerését és katalitikus magba kerülését.[15] A szabályzóegység alternatív formája a 11S részecske, mely a 19S-hez hasonlóan asszociálhat a maggal, és idegen, például vírusfertőzéskor keletkező peptidek bontásában lehet fontos.[16]

20S-mag

A 20S-mag alegységeinek száma és diverzitása fajfüggő, többsejtű élőlényekben több különböző és specializált egység van, mint egysejtűekben, és több van eukariótákban, mint prokariótákban. Minden 20S-részecske 4 heptamer gyűrűből áll, melyek két alegységből állnak, az α-egységek szerkezetiek, a β-egységek elsősorban katalitikusak. Az α-egységek az β-egységekkel homológ pszeudoenzimek. A β-egységekkel szomszédosan N-terminálisan vannak összekötve.[17] A két külső gyűrű 7 α-alegységet tartalmaz, melyek a szabályzórészecskék kapcsolódoménjei, az α-egységek N-terminusai (Pfam PF10584) a szubsztrát szabályozatlan bekerülését akadályozó kaput alkotnak.[18] A két belső gyűrű 7 β-alegységből áll, és N-terminusaikban proteázok aktív helyei vannak, melyek a proteolízist végzik.[19] Három eltérő katalitikus aktivitást azonosítottak a tiszta komplexben: chimotripszin-, tripszinszerűt és peptidilglutamilpeptid-hidrolitikust.[20] A proteaszóma mérete viszonylag állandó, körülbelül 150 × 115 Å. A belső kamra legfeljebb 53 Å széles, de a bejárat akár 13 Å is lehet, így a szubsztrátok szerkezeteinek feltehetően legalább részben fel kell bomlaniuk a bemenethez.[21]

Az archeákban, például a Thermoplasma acidophilumban minden α- és minden β-alegység azonos egymással, míg az eukariótákéi, például az élesztőéi az egyes alegységekből 7 eltérő típust tartalmaz. Emlősökben a β1, a β2 és a β5 egységek katalitikusak, és bár mechanizmusuk azonos, szubsztrátspecificitásuk eltér – chimotripszin-, tripszinszerű és peptidilglutamilpeptid-hidrolitikus (PHGH).[22] A β1i, β2i és β5i alternatív β-formákat expresszálhatják vérképző sejtek proinflammatiós sejtjelzésekre, például citokinekre, különösen a γ-interferonra válaszul. Az ezen alternatív egységekkel rendelkező proteaszóma az immunproteaszóma, melynek szubsztrátspecificitása eltér a normálistól.[21] 2016-ban az α3 magrész nélküli alternatív proteaszómát azonosítottak humán sejtekben.[23] Ezek az α4–α4 proteaszómák a hiányzó α3 egység helyén α4 egységet tartalmaznak. Ezek létét korábban igazolták élesztőben.[24] Pontos működésük nagyrészt ismeretlen, de az ezeket tartalmazó sejtek jobban ellenállnak a mérgező fémeknek, például a kadmiumnak.[23][25]

19S-szabályzórészecske

A 19S részecske eukariótákban 19 különböző fehérjéből áll, és két részből áll, az egyik egy közvetlenül a 20S maghoz kötő 9 alegységes alap, a másik 10 alegységes fedő. 6 alapfehérje az AAA családba tartozó ATPázalegység, homológjuk, a proteaszómaaktiváló nukleotidáz (PAN) megtalálható archeákban.[26] A 19S és 20S részecskék asszociációja az ATP 19S-ATPázokhoz kötését igényli, az ATP-hidrolízis a szerkezettel rendelkező ubikvitinált fehérjék bontásához szükséges. Csak a szubsztrátszerkezet felbontása igényel ATP-hidrolízisből energiát, a többi lépéshez (például komplexképzés, kapunyitás, transzlokáció, proteolízis) elegendő kizárólag az ATP-kötés.[27][28] Az ATP kötése az ATPázokhoz önmagában a szerkezet nélküli fehérjék gyors lebontását segíti. Azonban míg az ATP-hidrolízis csak a szerkezetbontáshoz kell, nem ismert, hogy ezt az energiát felhasználja-e a proteaszóma e lépések bármelyikében.[28][29]

A 26S proteaszóma ábrázolása[30]

2012-ben két független kutatás a 26S proteaszóma szerkezetét egyrészecskés elektronmikroszkópiával határozta meg.[31][32] 2016-ban három független kutatás először határozta meg a humán 26S proteaszóma közel atomi felbontású szerkezetét szubsztrát nélkül krioelektron-mikroszkópiával.[33][34][35] 2018-ban egy kutatásban kiderítették a dezubikvitiláció, a transzlokáció-iniciáció és a processzív szerkezetbontás mechanizmusát 7 szubsztráttal rendelkező 26S proteaszóma szerkezete révén.[15] A 19S-ben a 20S-sel szomszédosan vannak az AAA-ATPázok, melyek Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5 sorrendben heterohexamert alkotnak. Ez az Rpt1/Rpt2, Rpt6/Rpt3 és Rpt4/Rpt5 dimerek trimerje, mely N-terminális szerkezeteik mentén jön létre. Ezek a hexamer gyűrűből kiemelkednek. A legnagyobb szabályzó nem ATPázok az Rpn1 és Rpn2, melyek az Rpt1/2, illetve az Rpt6/3 fehérjékhez kötnek. Az ubikvitinreceptor Rpn13 az Rpn2-höz köt, lezárva ezt az alkomplexet. A fedő az AAA-ATPáz-hexamer egyik felét (Rpt6/3/4) fedi le, és közvetlenül érintkezik a 20S-sel az Rpn6 és kisebb mértékben az Rpn5 révén. Az Rpn9, Rpn5, Rpn6, Rpn7, Rpn3 és Rpn12 szerkezetileg egymáshoz és a COP9 szignaloszóma és az eukarióta iniciációs faktor 3 egységeihez kötnek, melyek az Rpn8/11 heterodimert körülzáró patkószerkezetben állnak össze. Az Rpn11, a dezubikvitináló enzim az AAA-ATPáz hexamer nyílásán van, lehetővé téve a szubsztrátokról az ubikvitin eltávolítását bekerülésük előtt. Az Rpn10 a fedő perifériáján, az Rpn8 és Rpn9 mellett van.

A 19S konformációs változásai

A 19S szabályzórészecskét a 26S proteaszóma holoenzimjében szubsztrát nélkül 6 erősen eltérő konformációs állapotban azonosították.[36][37] Az alacsony energiájú AAA-ATPáz-konfigurációban a domének lépcsőzetesen vagy alátétszerűen találhatók.[30][31] ATP jelenlétében szubsztrát nélkül 3 alternatív, kevésbé gyakori konformáció jelenik meg, melyek elsősorban a fedél elhelyezkedésében térnek el az AAA-ATPáz-modulhoz viszonyítva.[33][37] ATP-γS vagy szubsztrát jelenlétében sokkal több konfiguráció ismert az AAA-ATPáz jelentős szerkezeti változásaival.[15][36][38][39] Egyes szubsztrátkötött változatok hasonlítanak a szubsztrátmentesekhez, de nem azonosak, különösen az AAA-ATPázban.[15][36] A 26S létrejötte előtt megfigyelték a szabad 19S szabályzórészecskét 7 konformációs állapotban.[40] Ezek kissé eltérnek, és jellemzőik is eltérnek. Így a 19S legalább 20 konformációs állapotot mutathat eltérő fiziológiai körülmények közt.

A 26S három különböző állapota.[37] Ezek feltehetően a szubsztrát aktiválásáért, irreverzibilis szerkezetbontásáért és magba kerüléséért felel.

A 20S szabályzása a 19S által

A 19S szabályzórész felel a 20S fehérjebontásának stimulálásáért. A 19S szabályzó ATPázainak elsődleges funkciója a 20S kapujának nyitása, mely akadályozza a szubsztrátok bekerülését.[41] A proteaszóma-ATPáz kapunyitási mechanizmusát 2007-ben igazolták.[18] A 20S-kapunyitás, így a szubsztrátbontás is, a proteaszóma-ATPázok C-terminusait igényli, melyek speciális HbYX motívumot tartalmaznak. Ezek a 20S tetején lévő üregekbe kötnek, és az ATPázt a 20S proteolitikus komplexbe rögzítik, összekötve a szubsztrátszerkezet-bontó szerkezetet a 20S bontószerkezetével. Maga e kötés a kulcshoz hasonlóan nyitja a 20S kapuját.[18] Ennek pontos mechanizmusa a humán 26S proteaszómánál közel atomi felbontásban ismert, így feltehetően az Rpt1/2/3/5/6 ATPázalegység C-terminusainak a 20S felszínébe való kötése kell a teljes nyitáshoz.[36][15][33]

További szabályzórészecskék

A 20S proteaszómák asszociálhatnak a 11S szabályzórészecskével is, ez ATPáz nélküli heptamer, mely rövid peptidek bontását segítheti, de teljes fehérjékéit nem. Feltehetően ennek oka a nagyobb szubsztrátok szerkezetének bontására való képesség hiánya. Ezt nevezik PA28-nak, REG-nek vagy PA26-nak is.[17] Az alegységek C-terminusához való kötés és az α-gyűrű konformációs változása a 20S-kapu nyitásához hasonló a 19S-éhez.[42] A 11S expresszióját a γ-interferon indukálja, és a fő hisztokompatibilitási komplexhez kötni képes peptideket hoz létre.[16]

További nem ATPáz szabályzórészecske a Blm10 (élesztő) vagy a PA200/PSME4 (ember). A 20S-kapuban 1 α-egységet nyit, és kupolává hajlik kis pórussal felette.[17]

Keletkezés

A proteaszóma keletkezése összetett az aktív komplexhez szükséges alegységek száma miatt. A β-egységek N-terminális propeptidekből jönnek létre, melyek poszttranszlációsan módosulnak a 20S összeállásakor a proteolitikus aktív hely felszínre kerüléséhez. A 20S két félproteaszómából áll, melyekben 7 tagú pro-β gyűrű kapcsolódik 7 tagú α-gyűrűhöz. A félproteaszómák β-gyűrűinek összeállása a propeptidek treonindependens autolízisét okozza, megmutatva az aktív helyet. E β-kölcsönhatásokat szupramolekuláris sóhidak és az α-hélixek közti hidrofób kölcsönhatások mediálják, melyek mutációi csökkentik a proteaszóma összeállási képességét.[43] A félproteaszómák összeállását az α-alegységek heptamerizálódása indítja, mely a megfelelő pro-β-gyűrűhöz alkot sablont. Az α-alegységek összeállását nem jellemezték.[44]

2009-ig a 19S szabályzórészecske létrejöttének folyamatának nagy része ismert. A 19S két önálló alkomponensként (alap, fedő) jön létre. Az alap összeállását 4 chaperon (S5b, p27, PAAF1 és gankirin) könnyítik.[45] Ezek az AAA-ATPázokhoz kötnek, fő működésük feltehetően a heterohexamer AAA-ATPáz-gyűrű megfelelő összeállásának biztosítása. Még nem ismert, hogy az alap függetlenül jön-e létre, hogy ennek sablonja-e a 20S mag, és hogy van-e alternatív összeállási út. A 4 chaperon mellett a dezubikvitináló Usp14 is segíti az alap összeállását, de nem szükséges.[46] A fedő ettől függetlenül meghatározott sorrendben áll össze chaperon nélkül.[47]

Fehérjebontó folyamat

A proteaszóma által lebontandó fehérjéket jelölő ubikvitin szalagdiagramja

Ubikvitináció és célzás

A fehérjék proteaszóma általi bontása egy lizin kovalens módosításával történik, melyhez 3 enzim koordinált reakciója szükséges. Először egy ubikvitinaktiváló enzim (E1) hidrolizálja az ATP-t és ubikvitint adenilál. Ez ezután az E1 aktív helyen lévő ciszteinjére kerül egy második ubikvitin adenililációjával együtt.[48] Ezután ez az ubikvitinkonjugáló enzim (E2) ciszteinjére kerül. Végül egy erősen diverz enzimosztály, az ubikvitin-ligázok egy tagja (E3) felismeri az ubikvitinálandó fehérjét, és katalizálja az ubikvitin átvitelét az E2-ről a célfehérjére. A célfehérje legalább 4 ubikvitinnel jelölendő, hogy a proteaszóma felismerje.[49] It is therefore the E3 that confers substrate specificity to this system.[50] Az E1, E2 és E3 fehérjék száma fajtól és sejttípustól függ, de több különböző E3 enzim van emberben, ami azt jelenti, hogy az ubikvitin-proteaszóma rendszernek sok célpontja van.

A poliubikvitinált fehérje proteaszómához kerülésének mechanizmusa nem teljesen ismert. A poliubikvitinált fehérjéhez kötött proteaszómáról szóló néhány nagy felbontású pillanatkép alapján az ubikvitinreceptorok feltehetően az Rpn11 dezubikvitinázzal vannak koordinálva a kezdeti szubsztrátcélzáshoz és -bevitelhez.[15] Az ubikvitinreceptorokon N-terminális ubikvitinszerű (UBL) és egy vagy több ubikvitinasszociált (UBA) domén van. Az UBL doméneket a 19S szabályzóegységek felismerik, az UBA-k háromhélixes kötéssel kötnek ubikvitint. E receptorok segíthetik a poliubikvitinált fehérjéket a proteaszómához, de ennek módja nem ismert.[51]

Az ubikvitin 76 aminosavból áll, neve onnan ered, hogy mindenhol jelen van erősen állandósult szekvenciája miatt, és minden ismert eukariótában megtalálható.[52] Az ubikvitint kódoló gének az eukariótákban tandem ismétlődésekben vannak, feltehetően e gének erős transzkripciós igényei miatt a sejtnek az elegendő ubikvitin termeléséhez. Feltehetően az ubikvitin az egyik leglassabban változó fehérje.[53] Az ubikvitin 7 lizint tartalmaz, melyhez további ubikvitin csatlakozhat, különböző poliubikvitin-láncokat alkotva.[54] Az előző ubikvitin 48. lizinjéhez kötött ubikvitint tartalmazó fehérjék fontosak a proteaszómás bontásban, a többi lánctípusok más folyamatokban lehetnek fontosak.[55][56]

Ubikvitináció

Dezubikvitiláció

A proteaszomális bontásra jelölt fehérje ubikvitinjeit általában a 3 proteaszómaasszociált dezubikvitáló enzim (DUB) egyike, az Rpn11, az USP14 vagy az UCH37 eltávolítja, újrahasznosítva az ubikvitint, és az ubikvitinszintet fenntartva.[56] Az Rpn11 a 19S belső, sztöchiometriai alegysége, és a 26S proteaszómához szükséges. DUB-aktivitása a monomer formájáénál nagyobb. Ubikvitineltávolító módszerét az EB konformációjú proteaszómában figyelték meg.[15] Ez megmutatja, hogy a DUB-aktivitás az AAA-ATPáz általi szubsztrátfelismeréssel összefügg. Az Rpn11-gyel szemben az USP14 és az UCH37 nem mindig asszociálnak a proteaszómával. A sejtekben a proteaszómák 10–40%-a tartalmaz USP14-et. Az USP14 és az UCH37 is nagyrészt a proteaszómával aktiválódik, és csekély a saját DUB-aktivitása. Aktiválása után az USP14 gátolja a proteaszóma működését DUB-aktivitásával és párhuzamos proteaszómakonformációs átmenetek indukálásával, melyek egyike megakadályozza a szubsztrát AAA-ATPázba kerülését, melyet krioelektron-mikroszkópiával figyeltek meg.[57] Az USP14 a proteaszómaműködést több ellenőrzőponton szabályozza, mivel katalitikusan verseng az Rpn11-gyel, és allosztérikusan módosítja az AAA-ATPáz állapotát.[57] Ezek alapján a proteaszóma szabályzása függhet konformációs állapotai dinamikus átmenetétől.

Kibontás és transzlokáció

Egy fehérje ubikvitinációja után a 19S ATP-dependens kötéssel felismeri.[15][28] Ezután a szubsztrát bekerül a 20S alegységbe, hogy érintkezzék a proteolitikus aktív helyekkel. Mivel a 20S részecske központi csatornája szűk, és az α-alegységek N-terminusai határolják, a szubsztrátoknak bekerülés előtt legalább részben fel kell bomlaniuk.[15] Ez a bekerülés a transzlokáció, és a dezubikvitináció után történik.[15][28] Azonban a dezubikvitináció és a felbontás sorrendje nem ismert.[58] Hogy melyik a sebességmeghatározó lépés, a szubsztráttól függ, egyes fehérjéknél a felbontás az, más fehérjéknél a dezubikvitináció.[27] A szubsztrátok felbontásának mértéke a transzlokáció előtt feltehetően 20 aminosav a szubsztráttal rendelkező 26S proteaszóma szerkezete alapján a dezubikvitilációkompatibilis állapotban,[15] de a jelentős harmadlagos szerkezet, és különösen a nem lokális kölcsönhatások, például a diszulfidkötések gátolják a lebontást.[59] A kellő méretű rendezetlen szakaszok hossza feltehetően segíti a lebontás elindítását.[60][61]

Az α-alegységek alkotta kapu megakadályozza a nagyjából 4 aminosavnál hosszabb peptidek bekerülését a 20S-be. A felismerés előtt kötött ATP-molekulák a transzlokáció előtt hidrolizálódnak. Míg a szerkezet felbontásához energia kell, a transzlokációhoz nem.[27][28] A 26S proteaszóma képes nem hidrolizálható ATP-analóggal a felbontott fehérjéket lebontani, de felbontatlanokat nem, így az ATP-hidrolízisből származó energia szükséges a szubsztrát felbontásáhozg.[27] A felbontott szubsztrát áthaladását a nyitott kapun a könnyített diffúzió teszi lehetővé, ha a 19S elemhez ATP köt.[62]

A globuláris fehérjék felbontásának mechanizmusa általános, de aminosavszekvencia-függő. A hosszú glicin-alanin szekvenciák gátolják a szubsztrát felbontását gátolják, csökkentve a proteaszómás bontás hatékonyságát, részben bontott melléktermékeket feltehetően az ATP-hidrolízis és a felbontás lépései közti kapcsolat hiánya miatt.[63] Ilyen glicin-alanin ismétlődések vannak a természetben, például a selyem fibroinjában, továbbá az Epstein–Barr-vírus egyes ilyen szakaszt tartalmazó géntermékei leállíthatják a proteaszómát, segítve a vírus terjedését az antigénprezentáció megakadályozásával a fő hisztokompatibilitási komplexen.[64]

A 20S proteaszóma magja az aktív helyekkel. Az α-alegységek zölddel, a β-alegységek fehérjevázként ábrázolt polipeptidlánconként színezve. A kis rózsaszín gömbök az aktív hely treoninját mutatják. Világoskékkel az aktív helyekhez kötött bortezomib

Proteolízis

A proteaszóma endoproteázként működik.[65][66][67][68] A β-alegységek általi proteolízis mechanizmusa treonindependens nukleofil támadással történik. Ez asszociált víztől is függhet, mely deprotonálja a treonin hidroxilcsoportját. A bontás a központban történik, melyet a két β-gyűrű alkot, és nem bocsát ki részben lebontott termékeket, ehelyett rövid, 7–9 aminosavból álló polipeptidekre bontja a szubsztrátot, azonban ez élőlénytől és szubsztráttól függően 4–25 aminosav közt változhat. A termékhosszt meghatározó biokémiai mechanizmus nem teljesen ismert.[69] Bár a 3 katalitikus β-alegység mechanizmusa közös, szubsztrátspecificitásuk eltér, ezek chimotripszin-, tripszin- és peptidil-glutamilpeptid-hidroláz-szerű (PHGH). E specificitáseltérések az aminosavakkal való atomközi érintkezések eredményei az alegységek aktív helyei közelében. A katalitikus β-alegységek a proteolízishez szükséges állandósult lizint is tartalmaznak.[22]

Bár a proteaszóma normál esetben rövid peptidrészleteket tartalmaz, egyes esetekben ezek biológiailag aktívak és működőképesek. Egyes bizonyos gének expresszióját szabályzó transzkripciós faktorok, beleértve az NF-κB egy részét is, inaktív prekurzorként jönnek létre, melyeket az ubikvitináció, majd a proteaszomális bontás tesz aktívvá. Ez az aktivitás a szubsztrát belső proteaszomális bontását igényli a processzív helyett. A hosszú gyűrűk e fehérjéken feltehetően proteaszómaszubsztrátok, melyek középre kerülnek, míg a fehérje legnagyobb része kívül marad.[70] Hasonló hatást figyeltek meg élesztőben is, ez a szabályzott ubikvitin/proteaszóma-dependens feldolgozás (RUP).[71]

Ubikvitinfüggetlen bontás

Bár a legtöbb proteaszómaszubsztrát bontás előtt ubikvitinációt igényel, ez alól vannak kivételek, különösen ha a proteaszóma normál szerepet játszik a poszttranszlációs fehérjefeldolgozásban. Az NF-κB p105 p50-re való feldolgozása és belső proteolízis révén történő aktiválása fontos példa erre.[70] Egyes belső szerkezet nélküli régiók miatt feltehetően instabil fehérjéket[72] is ubikvitinfüggetlenül bont. Fontos példa ubikvitinfüggetlen proteaszómaszubsztrátra az ornitin-dekarboxiláz.[73] Ismertek ubikvitinfüggetlen sejtciklusszabályzó fehérjék is, példa erre a p53, azonban ez ubikvitindependensen is bomlik.[74] A hibás szerkezetű vagy erősen oxidált fehérjék ubikvitin- és 19S-independensen bomlanak sejtstressz esetén.[75]

Evolúció

A hslV (kék) és a hslU (piros) komplexe Escherichia coliban. E hősokkprotein-komplex feltehetően a proteaszómák ősére hasonlít

A 20S proteaszóma mindenhol jelen van, és fontos az eukariótákban és az archeákban. A baktériumok Actinomycetales rendjében is vannak 20S-homológok, a legtöbb baktériumban jelen van továbbá a hslV és a hslU hősokkgén, melyek terméke kétrétegű gyűrűt és ATPázt tartalmazó multimer proteáz.[76] A hslV feltehetően a 20S proteaszóma ősére hasonlít.[77] Azonban a HslV nem szükséges a baktériumoknak, és nincs minden baktériumban, azonban egyes protiszták rendelkeznek a 20S és a hslV rendszerrel is.[76] Sok baktériumban más homológok és megfelelő ATPázok is jelen vannak, például a ClpP és ClpX. Ez magyarázhatja, miért nem szükséges a HslUV-rendszer.

Szekvenciaanalízis alapján a β-alegységke a főleg szerkezeti α-nál korábban váltak szét. A 20S proteaszómát expresszáló baktériumokban a β-alegységek szekvenciái az archeákéira és eukariótákéira nagyon hasonlítanak, míg az α-alegységekéi kevésbé. A 20S proteaszómák jelenléte a baktériumokban feltehetően horizontális géntranszfer eredménye, míg az alegységek eukariótákban lévő diverzifikációja több génduplikáció miatt történt.[76]

Sejtciklus-irányítás

A sejtciklus előrehaladását a ciklindependens kinázok (CDK) irányítják, melyeket specifikus ciklinek aktiválnak, melyek a sejtciklus szakaszait határolják. A csak néhány percig a sejtben lévő mitotikus ciklinek élettartama az egyik legrövidebb a sejtbeli fehérjék közt.[1] Miután egy CDK–ciklin komplex elvégezte működését, a megfelelő ciklin poliubikvitinálódik, és a proteaszóma lebontja, irányítva a sejtciklust. Például a mitózisból való kilépéshez a mitózissegítő faktorba tartozó ciklin B proteaszómadependens disszociációja kell.[78] Gerincessejtekben a mitotikus ellenőrzőponton való, az M-fázisból való idő előtti kilépést okozó „átcsúszás”, az orsó-ellenőrzőpont általi késleltetés ellenére is megtörténhet.[79]

A korábbi sejtciklus-ellenőrzőpontok, például a G1 és az S fázis közti posztrestrikciós ellenőrző pont ugyanígy a ciklin A bontását igényli, ennek ubikvitinációjához anafázissegítő komplex (APC) kell, mely E3-ubikvitin-ligáz.[80] Az APC és az Skp1/Cul1/F-box fehérjekomplex (SCF komplex) a ciklinbontás és ellenőrzőpont-irányítás két fontos szabályzója, az APC az adaptorprotein Skp2 ubikvitinációjával irányítja az SCF komplexet, megakadályozva annak aktivitását a G1–S átmenet előtt.[81]

A 19S részecske egyes tagjainak is saját szabályzószerepük van. Az onkoprotein gankirin egyike a 19S alkomponenseinek, mely erősen köti a CDK4-et, és fontos az ubikvitil-p53 felismerésében az MDM2 ubikvitinligázhoz való affinitása révén. A gankirin antiapoptotikus, és egyes tumorok, például a májsejtes karcinóma túlexpresszálják.[82]

Az eukariótákhoz hasonlóan egyes archeák is a proteaszómával irányítják sejtciklusukat az ESCRT-III-mediált sejtosztódás irányításával.[83]

Növénynövekedés-szabályzás

A növényekben az auxinok általi jelzés számos transzkripciósfaktor-represszor proteaszomális bontásra való jelölését indukálja. Ezeket az SCFTIR1 (az SCF és a TIR1 auxinreceptor komplexe) ubikvitinálják. Az Aux/IAA-fehérjék bomlása derepresszálja az auxinválasz-faktor (ARF) család transzkripciós faktorait, és indukálja az ARF-irányított génexpressziót.[84] Hatásai függnek a növény típusától és fejlődési szakaszától, de fontosak a gyökerek és a levélerek növekedésének irányításában. Az ARF-derepressziós választ feltehetően az ARF- és Aux/IAA-fehérjék kapcsolódási specificitása mediálja.[85]

Apoptózis

A belső és külső jelzések is apoptózisindukcióhoz vezethetnek. A sejtalkotók ily lebontását elsősorban speciális proteázok, a kaszpázok végzik, de a proteaszóma fontos az apoptózisban is. A proteaszóma részvételét e folyamatban a nagyobb fehérjeubikvitináció és E1-, E2- és E3-koncentráció mutatják, melyek az apoptózis előtt jóval láthatók.[86][87][88] Az apoptózis során a magi proteaszómák a külső membrán blebjeihez transzlokálnak.[89]

A proteaszómagátlás az apoptózisindukción különböző sejttípusokban eltérően hat. Általában nem szükséges a proteaszóma az apoptózishoz, de gátlása a legtöbb tanulmányozott sejttípusban proapoptotikus. Az apoptózist a növekedéssegítő sejtciklusfehérjék bomlásának zavara mediálja.[90] Azonban egyes sejtvonalakban – például kvieszcens és differenciált sejtek, például timociták és neuronok – primer kultúrájában a proteaszómagátlás akadályozza az apoptózist. Ennek mechanizmusa nem ismert, de feltehetően csak kvieszcens állapotú sejtekre jellemző, vagy a JNK proapoptotikus kináz eltérő aktivitása okozhatja.[91] A proteaszómagátlók gyorsan osztódó sejtekben történő apoptózisokozása néhány újabb kemoterápiás szerben, például a bortezomibban és a szalinosporamid A-ban használatos.

Sejtstresszre adott válasz

Sejtstresszekre – például fertőzésre, hősokkra vagy oxidatív stresszre – válaszolva a hibás szerkezetű fehérjéket azonosító és proteaszomális bontásra jelölő hősokkproteinek expresszálódnak. A Hsp27 és a Hsp90 chaperonok is összefüggnek az ubikvitin-proteaszóma rendszer aktivitásának növelésében, bár nem közvetlen résztvevők.[92] A Hsp70 ezzel szemben a kitett hidrofób részekhez köt a hibás fehérjék felszínén, és E3 ubikvitinligázokat, például CHIP-et aktivál a fehérjék proteaszomális bontásra való jelöléséhez.[93] A CHIP-et (Hsp70-kölcsönhatófehérje karboxilterminusa) arotein) az E3 enzim és az E2 kötőpartner közti kölcsönhatások szabályozzák.[94]

Hasonló mechanizmusok segítik az oxidatívan sérült fehérjék lebontását a proteaszóma-rendszer révén. A magi proteaszómákat a PARP szabályozza, és a nem megfelelően oxidált hisztonokat bontják le.[95] A gyakran nagy amorf aggregátumokat alkotó oxidált fehérjéket közvetlenül a 20S mag bonthatja le a 19S szabályzóelem nélkül, és nem igényelnek ATP-hidrolízist vagy ubikvitines jelölést.[75] Azonban a nagymértékű oxidatív károsodás növeli a fehérjerészek közti keresztkötések kialakulását, proteolízissel szemben ellenállóvá téve őket. Az ilyen oxidált aggregátumok nagyobb mennyisége összefügg az öregedéssel.[96]

Az ubikvitin-proteaszóma rendszer hibás szabályzása számos idegrendszeri betegségben közreműködhet. Agytumorokhoz (például asztrocitóma) vezethet.[97] Néhány késői megjelenésű neurodegeneratív betegség, melyek közös jellemzői a hibás fehérjék, például a Parkinson-kór és az Alzheimer-kór, nagy oldhatatlan hibásfehérje-aggregátumok jöhetnek létre, melyek neurotoxicitást okozhatnak ismeretlen mechanizmus miatt. A csökkent proteaszómaaktivitás lehet az aggregátumok és Lewy-testek keletkezésének oka a Parkinson-kórban.[98] Ezt támasztja alá, hogy a Parkinson-kór élesztőmodelljei érzékenyebbek az α-szinuklein, a Lewy-testek legfőbb összetevője toxicitására alacsony proteaszómaaktivitás esetén.[99] Szintén ez okozhatja az autizmus-spektrumzavart és bizonyos izom- és idegrendszeri betegségeket, például az inklúziós testes miopátiát.[97]

Az immunitásban

A proteaszóma szerepe egyszerű, de fontos az adaptív immunitásban. A peptidantigéneket a fő hisztokompatibilitási komplex I. osztályú fehérjéi mutatják az antigénprezentáló sejtekben. Ezek a patogén proteaszomális bontásának termékei. Bár a kis mennyiségben expresszált proteaszómák részt vehetnek e folyamatban, egy speciális fehérjekomplex, melynek expresszióját a γ-interferon indukálja, az MHC-kötéshez optimális méretű és összetételű peptidek elsődleges termelője. E fehérjék, melyek expressziója immunválasz során megnő, például a 11S szabályzófehérje, mely szabályozza az MHC-ligandum-termelést, valamint a β1i, a β2i és a β5i egységek. Ezenk az immunproteaszómát alkotják.[16] Egy másik β5i-variánst, a β5t-t a csecsemőmirigy expresszál (timoproteaszóma), de funkciója ismeretlen.[100]

Az MHC I-hez való kötés ereje függ a ligandum C-terminális összetételétől, mivel a peptidek hidrogénkötéssel és a B-üreggel való közeli érintkezésekkel kötnek az MHC felszínén. Sok MHC I-allél preferálja a hidrofób C-terminális aminosavakat, és az immunproteaszóma nagyobb valószínűséggel hoz létre hidrofób C-terminusokat.[101]

Az aktív NF-κB létrehozásában való fontossága miatt a proteaszómák aktivitása összefügg a gyulladásos és az autoimmun betegségekkel. A nagyobb proteaszómaaktivitás összefügg a betegségek aktivitásával és az autoimmun betegségekkel, például a szisztémás lupusszal és a reumatoid arthritisszel.[16]

A proteaszóma fontos az antitesthez kötött virionok sejten belüli antitestmediált proteolízisében. Ekkor a TRIM21 immunglobulin G-hez köt, a viriont a proteaszómához irányítva, ahol az lebomlik.[102]

Proteaszómagátlók

A mielóma multiplex ellen gyakran hatásos bortezomib szerkezete
Élesztő-proteaszóma magjához kötött bortezomib. A bortezomib középen elem szerint színezve (rózsaszín: szén, kék: nitrogén, piros: oxigén, bór: sárga), körülötte a helyi fehérjefelszínnel. A kék pont a katalitikus treonin, melynek aktivitását gátolja a bortezomib.

A proteaszómagátlók fontos tumorellenes aktivitással rendelkeznek sejttenyészetben a növekedést segítő sejtciklusfehérjék bontását megzavarva apoptózist okoznak bennük.[90] E szelektív apoptózisindukció hatékonynak bizonyult állatmodellben és humán kísérletekben is.

A laktacisztin, a Streptomyces baktériumok által szintetizált természetes termék volt az első ismert nem peptid proteaszómagátló,[103] és gyakran használják biokémiai és sejtbiológiai kutatásokban. A laktacisztint a Myogenics/Proscript szabadalmaztatta, melyet a Millennium Pharmaceuticals vásárolt fel, mely a Takeda Pharmaceuticals része. A laktacisztin a proteaszóma katalitikus β-alegységeinek, különösen a proteaszóma chimotripszinszerű aktivitásáért felelős β5 N-terminális treoninját módosítja. Ez alapján a proteaszóma treoninproteáz.

A bortezomib (boronált MG132), melyet a Millennium Pharmaceuticals fejlesztett ki, és Velcade néven forgalmaz, az első kemoterápiás anyagként klinikailag használt proteaszómagátló.[104] A mielóma multiplex kezelésére használják.[105] A mielóma multiplex nagyobb proteaszómaeredetűpeptid-szintet okoz a vérszérumban, mely sikeres kemoterápia esetén normál értékre csökken.[106] Állatkísérletek igazolták, hogy a bortezomib klinikailag jelentős hatással rendelkezik hasnyálmirigyrákban.[107][108] Pre- és korai klinikai kutatásokban vizsgálták a bortezomib hatásosságát más B-sejt-alapú rákokban,[109] különös tekintettel néhány nem Hodgkin-limfóma-típusra.[110] A klinikai eredmények megerősítik a proteaszómagátló kemoterápiával való együttes használatát B-sejtes akut limfoblasztos leukémiában.[111] A proteaszómagátlók képesek glükokortikoid-rezisztens leukémiasejt-tenyészeteket elölni.[112]

A ritonavir proteázgátló, melyet HIV-fertőzés ellen használtak. Azonban kimutatták, hogy a proteaszómák chimotripszinszerű aktivitását gátolja, míg a tripszinszerűt kissé erősíti.[113] Állatkísérletek szerint a ritonavir gátolhatja a gliomasejtek növekedését.[114]

A proteaszómagátlók ezenkívül autoimmun betegségek kezelésében is hasznosak lehetnek. Például humán bőrgraftokkal rendelkező egerekben kisebbek lettek a pszoriázisos léziók proteaszómagátlóval való kezelés után.[115] Ezenkívül az asztma rágcsálómodelljeiben is hasznosnak bizonyultak.[116]

A proteaszóma jelölése és gátlása fontos ezenkívül a proteaszómaaktivitás in vitro és in vivo tanulmányozásában is. A leggyakrabban használt gátlók a laktacisztin és a Goldberg laboratórium által fejlesztett MG132. Fluoreszcens gátlókat is létrehoztak a proteaszóma aktív helyeinek megjelölésére.[117]

Klinikai jelentőség

A proteaszóma és alegységei legalább 2 okból fontosak klinikailag:

  1. a hibás komplex vagy a rosszul működő proteaszóma bizonyos betegségekkel összefügg,
  2. felhasználhatók gyógyszercélpontként terápiás beavatkozásokban. 2009-től további kísérleteket végeztek a proteaszóma vizsgálatához új diagnosztikai markerek és stratégiák fejlesztésében. A proteaszómák patofiziológiájának jobb megértése klinikailag használható gyógyszerekhez vezethet.

A proteaszómák az ubikvitin-proteaszóma rendszer[118] és a megfelelő fehérjeminőség-ellenőrzés fontos részei. A fehérjeubikvitináció és a proteolízis fontosak a sejtciklus, a sejtnövekedés és -differenciáció, a géntranszkripció, a jeltranszdukció és az apoptózis terén.[119] A hibás proteaszómák csökkent proteolízishez és a hibás fehérjék növekedéséhez vezet, mely közreműködhet neurodegeneratív,[120][121] cardiovascularis,[122][123][124] gyulladásos és autoimmun betegségekben[125] szisztémás DNS-károsodási válaszokhoz és daganatokhoz.[126]

A hibás UPS összefügg számos neuro- és miodegeneratív betegséggel, például az Alzheimer-kórral,[127] a Parkinson-kórral,[128] a Pick-kórral,[129] az amiotrófiás laterálszklerózissal,[129] a Huntington-kórral,[128] a Creutzfeldt–Jakob-kórral[130] és más mozgatóideg-, poliglutamin-betegségekkel (poliQ), izomdisztrófiákkal[131] és néhány demenciával összefüggő ritka neurodegeneratív betegséggel.[132] Az UPS részeként a proteaszóma fenntartja a szív fehérje-homeosztázisát, így fontos a szív ischaemiás sérülése,[133] ventricularis hipertrófia[134] és szívelégtelenség esetén.[135] Ezenkívül az UPS fontos a malignus átalakulásban. Az UPS-proteolízis a ráksejtek rák kialakulásához szükséges stimulációs jeleiben fontos, melyek a rák kialakulásához fontosak. Ennek megfelelően a transzkripciós faktorok, például a p53, a c-jun, a c-Fos, az NF-κB, a MYC, a HIF-1α, a MATα2, a STAT3, a szterolszabályzottelem-kötő fehérjék és az androgénreceptorok bomlását is az UPS szabályozza, így érintettek bizonyos ráktípusokban.[136] Ezenkívül a tumorszupresszorgén-termékeket, például az adenomatosus polyposis colit (APC) colorectalis rák és a von Hippel–Lindau-tumorszupresszort (VHL) retinoblasztóma esetén, valamint számos protoonkogént (Raf, Myc, MYB, Rel, Src, MOS, ABL). Ezenkívül befolyásolja a gyulladásos válaszokat is. Ezt elsősorban az NF-κB-aktivációnak tulajdonítják, segítve a proinflammatiós citokinek, például a TNF-α, az IL-β, az IL-8, az adhéziós fehérjék (ICAM-1, VCAM-1, P-szelektin), a prosztaglandinok és a nitrogén-monoxid (NO) termelését.[125] Ezenkívül da leukocitaproliferációt is segíti, legfőképp a ciklinek és a CDK-gátlók bontása révén.[137] Végül a szisztémás lupusos, Sjögren-szindrómás és a reumatoid arthritises (RA) betegekben elsősorban a vérkeringésben lévő proteaszómák klinikai biomarkerek.[138]

Jegyzetek

Fordítás

Ez a szócikk részben vagy egészben a Proteasome című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.

További információk

A Wikimédia Commons tartalmaz Proteaszóma témájú médiaállományokat.