Exciton

quasi-particule composite d'un électron et d'un trou

Un exciton est, en physique, une quasi-particule que l'on peut voir comme une paire électron-trou liée par des forces de Coulomb. Une analogie souvent utilisée consiste à comparer l'électron et le trou respectivement à l'électron et au proton d'un atome d'hydrogène. Ce phénomène se produit dans les semi-conducteurs et les isolants.

Représentation schématique d'un exciton de Frenkel, dans un cristal (points noirs).

En 2008, le premier dispositif électronique basé sur des excitons a été démontré, fonctionnant à des températures cryogéniques[1]. En 2018, l'EPFL met au point un transistor basé sur les excitons qui peut fonctionner à température ambiante[2]. Cette technique ouvre la voie à une panoplie de nouvelles possibilités en excitonique, branche de la physique appliquée qui, après celle de la photonique et de la spintronique, s’avère des plus prometteuses pour l'électronique du futur[3].

Le terme est également utilisé en chimie pour désigner des états électroniquement excités des systèmes moléculaires, qui sont délocalisés sur au moins deux chromophores. Cette notion a été popularisée parmi les chimistes par M. Kasha dans les années 1960[4]. Depuis, de nombreux travaux décrivent des excitons dans des systèmes très variées, allant des agrégats H ou J[5] jusqu'aux systèmes photosynthétiques[6] et l'ADN[7].


Caractéristiques

On distingue généralement deux sortes d'exciton :

L'électron et le trou d'un exciton de Mott-Wannier sont séparés d'environ d~100-400Å tandis que cette séparation est de l'ordre de d<5Å pour un exciton de Frenkel. Il existe toutefois un cas intermédiaire que l'on retrouve dans les cristaux moléculaires organiques et où la distance entre l'électron et le trou correspond à une ou deux fois la distance intermoléculaire du plus proche voisin, on nomme cet exciton : exciton à transfert de charge[8].

Une autre façon de décrire un exciton est de le voir comme étant une onde de polarisation neutre dans le matériau.

Dans les matériaux semi-conducteurs, l'exciton se manifeste par la présence d'un pic d'absorption situé à une énergie plus faible que l'énergie de bande interdite du matériau[9]. La différence entre les deux énergies est l'énergie de liaison de l'exciton, et le pic excitonique n'est observable que lorsque l'énergie de liaison n'est pas négligeable devant l'énergie thermique : . Dans un puits quantique, l'énergie de la transition excitonique peut être modifiée par l'application d'un champ électrique (grâce à l'effet Stark), ce qui est à la base d'un modulateur d'intensité lumineuse : le modulateur à électro-absorption.

Historique

Le concept d’excitons a été proposé pour la première fois par Yakov Frenkel en 1931[10], quand il a décrit l’excitation des atomes d’un réseau dans un isolant. Il a proposé que cet état excité soit en mesure de voyager telle une particule à travers le réseau sans transfert de charge apparent.

Références

Voir aussi

Bibliographie

  • (en) Christine Middleton, « Dark excitons outnumber bright ones » [« Les excitons sombres sont plus nombreux que les excitons clairs »], Physics Today,‎ (DOI 10.1063/PT.6.1.20210107a)

Liens externes