User:Abyssal/Portal:Carboniferous


The Carboniferous Portal

Introduction

The Carboniferous (/ˌkɑːrbəˈnɪfərəs/ KAR-bə-NIF-ər-əs) is a geologic period and system of the Paleozoic that spans 60 million years from the end of the Devonian Period 358.9 Ma (million years ago) to the beginning of the Permian Period, 298.9 Ma. In North America, the Carboniferous is often treated as two separate geological periods, the earlier Mississippian and the later Pennsylvanian.

The name Carboniferous means "coal-bearing", from the Latin carbō ("coal") and ferō ("bear, carry"), and refers to the many coal beds formed globally during that time. The first of the modern "system" names, it was coined by geologists William Conybeare and William Phillips in 1822, based on a study of the British rock succession.

Carboniferous is the period during which both terrestrial animal and land plant life was well established. Stegocephalia (four-limbed vertebrates including true tetrapods), whose forerunners (tetrapodomorphs) had evolved from lobe-finned fish during the preceding Devonian period, became pentadactylous during the Carboniferous. The period is sometimes called the Age of Amphibians because of the diversification of early amphibians such as the temnospondyls, which became dominant land vertebrates, as well as the first appearance of amniotes including synapsids (the clade to which modern mammals belong) and sauropsids (which include modern reptiles and birds) during the late Carboniferous. Due to the raised atmospheric oxygen level, land arthropods such as arachnids (e.g. trigonotarbids and Pulmonoscorpius), myriapods (e.g. Arthropleura) and insects (e.g. Meganeura) also underwent a major evolutionary radiation during the late Carboniferous. Vast swaths of forests and swamps covered the land, which eventually became the coal beds characteristic of the Carboniferous stratigraphy evident today.

The later half of the period experienced glaciations, low sea level, and mountain building as the continents collided to form Pangaea. A minor marine and terrestrial extinction event, the Carboniferous rainforest collapse, occurred at the end of the period, caused by climate change. (Full article...)

Selected natural world article

Punctospirifer kentuckyensis.
Punctospirifer kentuckyensis.
Brachiopods are marine animals that have hard "valves" (shells) on the upper and lower surfaces, unlike the left and right arrangement in bivalvemolluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection. Two major groups are recognized, articulate and inarticulate. Articulate brachiopods have toothed hinges and simple opening and closing muscles, while inarticulate brachiopods have untoothed hinges and a more complex system of muscles used to keep the two halves aligned. In a typical brachiopod a stalk-like pedicle projects from an opening in one of the valves, known as the pedicle valve, attaching the animal to the seabed.

Lineages of brachiopods that have both fossil and extant taxa appeared in the early Cambrian, Ordovician, and Carboniferous periods, respectively. Other lineages have arisen and then become extinct, sometimes during severe mass extinctions. At their peak in the Paleozoic era, the brachiopods were among the most abundant filter-feeders and reef-builders, and occupied other ecological niches, including swimming in the jet-propulsion style of scallops. However, after the Permian–Triassic extinction event, brachiopods recovered only a third of their former diversity. It was often thought that brachiopods were in decline after the Permian–Triassic extinction, and were out-competed by bivalves. However, a study in 1980 found both brachiopod and bivalve species increased from the Paleozoic to modern times, but bivalves increased faster; after the Permian–Triassic extinction, brachiopods for the first time became less diverse than bivalves. (see more...)

Did you know...

Fossil of Neuropteris ovata.
Fossil of Neuropteris ovata.

Need help?

Do you have a question about Abyssal/Portal:Carboniferous that you can't find the answer to?

Consider asking it at the Wikipedia reference desk.

Selected image

Laelaps by Charles R. Knight.

Meganeura, model of a giant dragonfly, Carboniferous, Museum of Natural History, Berlin.
Photo credit: Gunnar Ries

Selected science, culture, or economics article

Illustration of Noeggerathia expansa by Louis Figuier.
Illustration of Noeggerathia expansa by Louis Figuier.
The history of paleontology traces the history of the effort to study the fossil record left behind by ancient life forms. Although fossils had been studied by scholars since ancient times, the nature of fossils and their relationship to life in the past became better understood during the 17th and 18th centuries. At the end of the 18th century the work of Georges Cuvier ended a long running debate about the reality of extinction and led to the emergence of paleontology as a scientific discipline.

The first half of the 19th century saw paleontological activity become increasingly well organized. This contributed to a rapid increase in knowledge about the history of life on Earth, and progress towards definition of the geologic time scale. As knowledge of life's history continued to improve, it became increasingly obvious that there had been some kind of successive order to the development of life. After Charles Darwin published Origin of Species in 1859, much of the focus of paleontology shifted to understanding evolutionary paths.

The last half of the 19th century saw a tremendous expansion in paleontological activity, especially in North America. The trend continued in the 20th century with additional regions of the Earth being opened to systematic fossil collection, as demonstrated by a series of important discoveries in China near the end of the 20th century. There was also a renewed interest in the Cambrian explosion that saw the development of the body plans of most animal phyla. (see more...)

Geochronology

Epochs - Mississippian - Pennsylvanian
Ages - Tournaisian - Visean - Serpukhovian - Bashkirian - Moscovian - Kasimovian - Gzhelian
Events - Acadian orogeny - Alice Springs Orogeny - Alleghanian orogeny - Variscan orogeny - Carboniferous rainforest collapse

Landmasses - Gondwanaland - Laurasia - Pangaea
Bodies of water - Proto-Tethys - Rheic Ocean - Ural Ocean - Panthalassa - Paleo-Tethys Ocean
Animals - Acanthodians - Ammonoids - Amphibians - Arthropleura - Brachiopods - Bryozoa - Corals - Crinoids - Eurypterids - Foraminiferans - Hederelloids - Meganeura - Microconchids - Ostracoda - Pulmonoscorpius - Reptiles - Sharks
Plants - Cordaitales - Equisetales - Filicales - Lepidodendrales - Lycopodiales - Medullosales - Sphenophyllales - Cycadophyta - Callistophytales - Voltziales

Fossil sites - Bear Gulch Limestone - Hamilton Quarry - Mazon Creek fossil beds
Stratigraphic units - Llewellyn Formation - Millstone Grit

Researchers - Alfred Sherwood Romer
Culture - List of creatures in the Walking with... series - Lost Worlds, Vanished Lives - Miracle Planet - Prehistoric Park - Walking with Monsters


Quality Content

Featured Carboniferous articles - Amphibian
Good Carboniferous articles - Bradford Colliery - Insect - Insect wing - Temnospondyli

Things you can do


Here are some tasks awaiting attention:

Current Carboniferous FACs - none currently

TimeEarth sciencesPaleontologyExtinct and Endangered Species
PaleozoicCambrianOrdovicianSilurian
DevonianCarboniferousPermian

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Carboniferous¤