Tetrahydropyridine

Tetrahydropyridines (or piperideines) are heterocycles with the formula C5H9N. Three isomers exist, which differ by the location of the double bond. None of the parent species occur widely, so they are mainly of theoretical interest. Although the parent tetrahydropyridines are rare, many substituted tetrahydropyridines are known.

Tetrahydropyridine

Three isomers of tetrahydropyridine
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
EC Number
  • 2,3,4,6: 211-766-2
KEGG
UNII
UN number2410
  • 2,3,4,5: InChI=1S/C5H9N/c1-2-4-6-5-3-1/h4H,1-3,5H2
    Key: DWKUKQRKVCMOLP-UHFFFAOYSA-N
  • 1,2,3,4: InChI=1S/C5H9N/c1-2-4-6-5-3-1/h2,4,6H,1,3,5H2
    Key: VSWICNJIUPRZIK-UHFFFAOYSA-N
  • 2,3,4,6: InChI=1S/C5H9N/c1-2-4-6-5-3-1/h1-2,6H,3-5H2
    Key: FTAHXMZRJCZXDL-UHFFFAOYSA-N
  • 2,3,4,5: C1CCN=CC1
  • 1,2,3,4: C1CC=CNC1
  • 2,3,4,6: C1CNCC=C1
Properties
C5H9N
Molar mass83.134 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Preparation and occurrence

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine causes permanent symptoms of Parkinson's disease.
(–)-Mitragynine is a naturally occurring tetrahydropyridine.

2,3,4,5-Tetrahydropyridine, a colorless liquid, is commercially available. It is an imine.

Illustrating another isomer of tetrahydropyridine, 6-acetyl-2,3,4,5-tetrahydropyridine occurs naturally.

Partial reduction of pyridinium salts gives N-alkyltetrahydropyridines. Treatment of N-methylpyridinium with borohydride reagents gives 1-methyl-1,2,3,6-tetrahydropyridine.[1][2]

A modified Ireland-Claisen rearrangement leads to tetrahydropyridines via a silyl ketene acetal intermediate.[3]

Ring-closing olefin metathesis has also been used to establish the tetrahydropyridine ring system.[4]

References