John E. Bercaw

John E. Bercaw (born December 3, 1944)[citation needed] is an American chemist and Centennial Professor of Chemistry, Emeritus at the California Institute of Technology.[1][2]

John E. Bercaw
Bercaw in 1986
Born (1944-12-03) December 3, 1944 (age 79)[citation needed]
NationalityAmerican
Alma mater
Known forMetallocene chemistry
Awards1980 ACS Award in Pure Chemistry
Scientific career
FieldsChemistry
InstitutionsCalifornia Institute of Technology
ThesisTitanocene as a reactive intermediate in the reduction of molecular hydrogen and nitrogen (1971)
Doctoral advisorHans-Herbert Brintzinger
Other academic advisorsJack Halpern
Doctoral studentsPeter T. Wolczanski, Paul Chirik, Barbara Burger
Other notable studentsDon Tilley, Gregory L. Hillhouse, Gerard Parkin, Christopher W. Jones, Guillermo Bazan
Websitewww.cce.caltech.edu/content/john-e-bercaw

Early life and education

Born in Cincinnati, Ohio,[citation needed] Bercaw obtained his bachelor of science in 1967 from North Carolina State University and later his PhD from the University of Michigan in 1971 under the direction of Hans-Herbert Brintzinger,[3] followed by postdoctoral research with Jack Halpern at the University of Chicago.[4]

Career

He joined the faculty at the Caltech in 1972. Bercaw was elected a Fellow of the American Academy of Arts and Sciences in 1991.[5]

He is a member of the National Academy of Sciences (elected 1990), and he has received several national awards from the American Chemical Society (see below).[6]

His research interests are in synthetic, structural and mechanistic organotransition metal chemistry, including most recently catalysts for polymerization and trimerization of olefins and investigations of hydrocarbon hydroxylation; fundamental transformations and thermodynamics of organotransition metal chemistry; catalysts for hydrocarbon partial oxidation; catalysts for olefin trimerization and polymerization; homogeneous transformations of carbon monoxide and dihydrogen to fuels and chemicals.

Prof. Bercaw has greatly enhanced our understanding of the mechanisms of Ziegler-Natta (ZN) olefin polymerizations. This metal-catalyzed polymerization process is operated on a vast scale and produces, worldwide, over 200 billion pounds of polyolefins per year. Bercaw’s work has led to a fundamental understanding of the detailed mechanisms of chain growth in ZN polymerizations and the factors which control syndio- and isotacticities and the degree of comonomer incorporation in copolymerizations; these variables are critical in determining the physical properties of the resultant polymers and copolymers.

Commercial processes have been based on Bercaw’s discoveries. For example, new and superior ethylene/alpha-olefin copolymers are now industrially produced with titanium catalysts utilizing (η5- C5Me4)SiMe2NCMe3 and related ligands devised in Bercaw’s laboratories. These copolymers have proved to have superior properties. These types of systems have also allowed superior methods for production of ethylene/propylene and ethylene/propylene/diene elastomers.

Awards

Source:[7]

YearAwards
1980ACS Award in Pure Chemistry
1990ACS Award in Organometallic Chemistry
1997ACS Award for Distinguished Service in the Advancement of Inorganic Chemistry
1999ACS George A. Olah Award in Hydrocarbon or Petroleum Chemistry
1999American Institute of Chemists Chemical Pioneer Award
2000ACS Arthur C. Cope Scholar Award
2005Northwestern University - Chemistry Department's Basolo Medal
2008University of Chicago Chemistry Department Closs Lecturer
2013Southern California Section of the ACS Tolman Medal[8]
2014Willard Gibbs Award[9]
2017Gabor A. Somorjai Award for Creative Research in Catalysis[7]

References