4-polytope

Graphs of the six convex regular 4-polytopes
{3,3,3}{3,3,4}{4,3,3}

5-cell
Pentatope
4-simplex

16-cell
Orthoplex
4-orthoplex

8-cell
Tesseract
4-cube
{3,4,3}{3,3,5}{5,3,3}

24-cell
Octaplex

600-cell
Tetraplex

120-cell
Dodecaplex

In geometry, a 4-polytope (sometimes also called a polychoron,[1] polycell, or polyhedroid) is a four-dimensional polytope.[2][3] It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices, edges, faces (polygons), and cells (polyhedra). Each face is shared by exactly two cells. The 4-polytopes were discovered by the Swiss mathematician Ludwig Schläfli before 1853.[4]

The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron.

Topologically 4-polytopes are closely related to the uniform honeycombs, such as the cubic honeycomb, which tessellate 3-space; similarly the 3D cube is related to the infinite 2D square tiling. Convex 4-polytopes can be cut and unfolded as nets in 3-space.

Definition

A 4-polytope is a closed four-dimensional figure. It comprises vertices (corner points), edges, faces and cells. A cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i.e. it is not a compound.

Geometry

The convex regular 4-polytopes are the four-dimensional analogues of the Platonic solids. The most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube.

The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius. Each greater polytope in the sequence is rounder than its predecessor, enclosing more content[5] within the same radius. The 4-simplex (5-cell) is the limit smallest case, and the 120-cell is the largest. Complexity (as measured by comparing configuration matrices or simply the number of vertices) follows the same ordering.

Regular convex 4-polytopes
Symmetry groupA4B4F4H4
Name5-cell

Hyper-tetrahedron
5-point

16-cell

Hyper-octahedron
8-point

8-cell

Hyper-cube
16-point

24-cell


24-point

600-cell

Hyper-icosahedron
120-point

120-cell

Hyper-dodecahedron
600-point

Schläfli symbol{3, 3, 3}{3, 3, 4}{4, 3, 3}{3, 4, 3}{3, 3, 5}{5, 3, 3}
Coxeter mirrors
Mirror dihedrals𝝅/3 𝝅/3 𝝅/3 𝝅/2 𝝅/2 𝝅/2𝝅/3 𝝅/3 𝝅/4 𝝅/2 𝝅/2 𝝅/2𝝅/4 𝝅/3 𝝅/3 𝝅/2 𝝅/2 𝝅/2𝝅/3 𝝅/4 𝝅/3 𝝅/2 𝝅/2 𝝅/2𝝅/3 𝝅/3 𝝅/5 𝝅/2 𝝅/2 𝝅/2𝝅/5 𝝅/3 𝝅/3 𝝅/2 𝝅/2 𝝅/2
Graph
Vertices5 tetrahedral8 octahedral16 tetrahedral24 cubical120 icosahedral600 tetrahedral
Edges10 triangular24 square32 triangular96 triangular720 pentagonal1200 triangular
Faces10 triangles32 triangles24 squares96 triangles1200 triangles720 pentagons
Cells5 tetrahedra16 tetrahedra8 cubes24 octahedra600 tetrahedra120 dodecahedra
Tori1 5-tetrahedron2 8-tetrahedron2 4-cube4 6-octahedron20 30-tetrahedron12 10-dodecahedron
Inscribed120 in 120-cell675 in 120-cell2 16-cells3 8-cells25 24-cells10 600-cells
Great polygons2 squares x 34 rectangles x 44 hexagons x 412 decagons x 6100 irregular hexagons x 4
Petrie polygons1 pentagon x 21 octagon x 32 octagons x 42 dodecagons x 44 30-gons x 620 30-gons x 4
Long radius
Edge length
Short radius
Area
Volume
4-Content

Visualisation

Example presentations of a 24-cell
SectioningNet
Projections
Schlegel2D orthogonal3D orthogonal

4-polytopes cannot be seen in three-dimensional space due to their extra dimension. Several techniques are used to help visualise them.

Orthogonal projection

Orthogonal projections can be used to show various symmetry orientations of a 4-polytope. They can be drawn in 2D as vertex-edge graphs, and can be shown in 3D with solid faces as visible projective envelopes.

Perspective projection

Just as a 3D shape can be projected onto a flat sheet, so a 4-D shape can be projected onto 3-space or even onto a flat sheet. One common projection is a Schlegel diagram which uses stereographic projection of points on the surface of a 3-sphere into three dimensions, connected by straight edges, faces, and cells drawn in 3-space.

Sectioning

Just as a slice through a polyhedron reveals a cut surface, so a slice through a 4-polytope reveals a cut "hypersurface" in three dimensions. A sequence of such sections can be used to build up an understanding of the overall shape. The extra dimension can be equated with time to produce a smooth animation of these cross sections.

Nets

A net of a 4-polytope is composed of polyhedral cells that are connected by their faces and all occupy the same three-dimensional space, just as the polygon faces of a net of a polyhedron are connected by their edges and all occupy the same plane.

Topological characteristics

The tesseract as a Schlegel diagram

The topology of any given 4-polytope is defined by its Betti numbers and torsion coefficients.[6]

The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 4-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.[6]

Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal 4-polytopes, and this led to the use of torsion coefficients.[6]

Classification

Criteria

Like all polytopes, 4-polytopes may be classified based on properties like "convexity" and "symmetry".

Classes

The following lists the various categories of 4-polytopes classified according to the criteria above:

The truncated 120-cell is one of 47 convex non-prismatic uniform 4-polytopes

Uniform 4-polytope (vertex-transitive):

Other convex 4-polytopes:

The regular cubic honeycomb is the only infinite regular 4-polytope in Euclidean 3-dimensional space.

Infinite uniform 4-polytopes of Euclidean 3-space (uniform tessellations of convex uniform cells)

Infinite uniform 4-polytopes of hyperbolic 3-space (uniform tessellations of convex uniform cells)

Dual uniform 4-polytope (cell-transitive):

Others:

The 11-cell is an abstract regular 4-polytope, existing in the real projective plane, it can be seen by presenting its 11 hemi-icosahedral vertices and cells by index and color.

Abstract regular 4-polytopes:

These categories include only the 4-polytopes that exhibit a high degree of symmetry. Many other 4-polytopes are possible, but they have not been studied as extensively as the ones included in these categories.

See also

  • Regular 4-polytope
  • 3-sphere – analogue of a sphere in 4-dimensional space. This is not a 4-polytope, since it is not bounded by polyhedral cells.
  • The duocylinder is a figure in 4-dimensional space related to the duoprisms. It is also not a 4-polytope because its bounding volumes are not polyhedral.

References

Notes

Bibliography

  • H.S.M. Coxeter:
    • Coxeter, H.S.M. (1973) [1948]. Regular Polytopes (3rd ed.). New York: Dover.
    • H.S.M. Coxeter, M.S. Longuet-Higgins and J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Four-dimensional Archimedean Polytopes (German), Marco Möller, 2004 PhD dissertation [2] Archived 2005-03-22 at the Wayback Machine
FamilyAnBnI2(p) / DnE6 / E7 / E8 / F4 / G2Hn
Regular polygonTriangleSquarep-gonHexagonPentagon
Uniform polyhedronTetrahedronOctahedronCubeDemicubeDodecahedronIcosahedron
Uniform polychoronPentachoron16-cellTesseractDemitesseract24-cell120-cell600-cell
Uniform 5-polytope5-simplex5-orthoplex5-cube5-demicube
Uniform 6-polytope6-simplex6-orthoplex6-cube6-demicube122221
Uniform 7-polytope7-simplex7-orthoplex7-cube7-demicube132231321
Uniform 8-polytope8-simplex8-orthoplex8-cube8-demicube142241421
Uniform 9-polytope9-simplex9-orthoplex9-cube9-demicube
Uniform 10-polytope10-simplex10-orthoplex10-cube10-demicube
Uniform n-polytopen-simplexn-orthoplexn-cuben-demicube1k22k1k21n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds