Terabit Ethernet

(Redirected from 200 Gigabit Ethernet)

Terabit Ethernet (TbE) is Ethernet with speeds above 100 Gigabit Ethernet. The 400 Gigabit Ethernet (400G, 400GbE) and 200 Gigabit Ethernet (200G, 200GbE)[1] standard developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet[2][3] was approved on December 6, 2017.[4][5] On February 16, 2024 the 800 Gigabit Ethernet (800G, 800GbE) standard developed by the IEEE P802.3df Task Force was approved.[6]

The Optical Internetworking Forum (OIF) has already announced five new projects at 112 Gbit/s which would also make 4th generation (single-lane) 100 GbE links possible.[7] The IEEE P802.3df Task Force started work in January 2022 to standardize 800 Gbit/s and 1.6 Tbit/s Ethernet. [8] In November 2022 the IEEE 802.3df project objectives were split in two, with 1.6T and 200G/lane work being moved to the new IEEE 802.3dj project. The timeline for the 802.3dj project indicates completion in July 2026. [9]

History

Facebook and Google, among other companies, have expressed a need for TbE.[10] While a speed of 400 Gbit/s is achievable with existing technology, 1 Tbit/s (1000 Gbit/s) would require different technology.[2][11] Accordingly, at the IEEE Industry Connections Higher Speed Ethernet Consensus group meeting in September 2012, 400 GbE was chosen as the next generation goal.[2] Additional 200 GbE objectives were added in January 2016.

The University of California, Santa Barbara (UCSB) attracted help from Agilent Technologies, Google, Intel, Rockwell Collins, and Verizon Communications to help with research into next generation Ethernet.[12]

As of early 2016, chassis/modular based core router platforms from Cisco, Juniper and other major manufacturers support 400 Gbit/s full duplex data rates per slot. One, two and four port 100 GbE and one port 400 GbE line cards are presently available. As of early 2019, 200 GbE line cards became available after 802.3cd standard ratification.[13][14] In 2020 the Ethernet Technology Consortium announced a specification for 800 Gigabit Ethernet.[15]

200G Ethernet uses PAM4 signaling which allows 2 bits to be transmitted per clock cycle, but at a higher implementation cost.[16] Cisco introduced an 800G Ethernet switch in 2022.[17] In 2024, Nokia routers with 800G Ethernet were deployed.[18]

Standards development

The IEEE formed the "IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment Ad Hoc", to investigate the business needs for short and long term bandwidth requirements.[19][20][21]

IEEE 802.3's "400 Gb/s Ethernet Study Group" started working on the 400 Gbit/s generation standard in March 2013.[22] Results from the study group were published and approved on March 27, 2014. Subsequently, the IEEE 802.3bs Task Force[23] started working to provide physical layer specifications for several link distances.[24]

The IEEE 802.3bs standard was approved on December 6, 2017[4].

The IEEE 802.3cd standard was approved on December 5, 2018.

The IEEE 802.3cn standard was approved on December 20, 2019.

The IEEE 802.3cm standard was approved on January 30, 2020.

The IEEE 802.3cu standard was approved on February 11, 2021.

The IEEE 802.3ck and 802.3db standards were approved on September 21, 2022.

In November 2022 the IEEE 802.3df project objectives were split in two, with 1.6T and 200G/lane work being moved to the new IEEE 802.3dj project

The IEEE 802.3df standard was approved on February 16, 2024.

IEEE project objectives

Like all speeds since 10 Gigabit Ethernet, the standards support only full-duplex operation. Other objectives include:[24]

  1. Preserve the Ethernet frame format utilizing the Ethernet MAC
  2. Preserve minimum and maximum frame size of current Ethernet standard
  3. Support a bit error ratio (BER) of 10−13, which is an improvement over the 10−12 BER that was specified for 10GbE, 40GbE, and 100GbE.
  4. Support for OTN (transport of Ethernet across optical transport networks), and optional support for Energy-Efficient Ethernet (EEE).

802.3bs project

Define physical layer specifications supporting:[24]

  • 400 Gbit/s Ethernet
    • at least 100 m over multi-mode fiber (400GBASE-SR16) using 16 parallel strands of fiber each at 25 Gbit/s[25][26]
    • at least 500 m over single-mode fiber (400GBASE-DR4) using 4 parallel strands of fiber each at 100 Gbit/s[27][28]
    • at least 2 km over single-mode fiber (400GBASE-FR8) using 8 parallel wavelengths (CWDM) each at 50 Gbit/s[27][29][30]
    • at least 10 km over single-mode fiber (400GBASE-LR8) using 8 parallel wavelengths (CWDM) each at 50 Gbit/s[27][30][31]
    • 8 and 16 lane chip-to-chip/chip-to-module electrical interfaces (400GAUI-8 and 400GAUI-16)
  • 200 Gbit/s Ethernet
    • at least 500 m over single-mode fiber (200GBASE-DR4) using 4 parallel strands of fiber each at 50 Gbit/s[32][33]
    • at least 2 km over single-mode fiber (200GBASE-FR4) using 4 parallel wavelengths (CWDM) each at 50 Gbit/s[1][33]
    • at least 10 km over single-mode fiber (200GBASE-LR4) using 4 parallel wavelengths (CWDM) each at 50 Gbit/s[1][33]
    • 4 or 8 lane chip-to-chip/chip-to-module electrical interfaces (200GAUI-4 and 200GAUI-8)

802.3cd project

  • Define four-lane 200 Gbit/s PHYs for operation over:
    • copper twin-axial cables with lengths up to at least 3 m (200GBASE-CR4).
    • printed circuit board backplane with a total channel insertion loss of ≤ 30 dB at 13.28125 GHz (200GBASE-KR4).
  • Define 200 Gbit/s PHYs for operation over MMF with lengths up to at least 100 m (200GBASE-SR4).

802.3ck project

  • 200 Gbit/s Ethernet
    • Define a two-lane 200 Gbit/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 100 Gbit/s per lane optical signaling (200GAUI-2 C2M)
    • Define a two-lane 200 Gbit/s Attachment Unit Interface (AUI) for chip-to-chip applications (200GAUI-2 C2C)
    • Define a two-lane 200 Gbit/s PHY for operation over electrical backplanes an insertion loss ≤ 28 dB at 26.56 GHz (200GBASE-KR2)
    • Define a two-lane 200 Gbit/s PHY for operation over twin axial copper cables with lengths up to at least 2 m (200GBASE-CR2)
  • 400 Gbit/s Ethernet
    • Define a four-lane 400 Gbit/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 100 Gbit/s per lane optical signaling (400GAUI-4 C2M)
    • Define a four-lane 400 Gbit/s Attachment Unit Interface (AUI) for chip-to-chip applications (400GAUI-4 C2C)
    • Define a four-lane 400 Gbit/s PHY for operation over electrical backplanes an insertion loss ≤ 28 dB at 26.56 GHz (400GBASE-KR4)
    • Define a four-lane 400 Gbit/s PHY for operation over twin axial copper cables with lengths up to at least 2 m (400GBASE-CR4)

802.3cm project

  • 400 Gbit/s Ethernet
    • Define a physical layer specification supporting 400 Gbit/s operation over 8 pairs of MMF with lengths up to at least 100 m (400GBASE-SR8)
    • Define a physical layer specification supporting 400 Gbit/s operation over 4 pairs of MMF with lengths up to at least 100 m (400GBASE-SR4.2)

802.3cn project

  • 200 Gbit/s Ethernet
    • Provide a physical layer specification supporting 200 Gbit/s operation over four wavelengths capable of at least 40 km of SMF (200GBASE-ER4) [34]
  • 400 Gbit/s Ethernet
    • Provide a physical layer specification supporting 400 Gbit/s operation over eight wavelengths capable of at least 40 km of SMF (400GBASE-ER8)[34]

802.3cu project

  • Define a four-wavelength 400 Gbit/s PHY for operation over SMF with lengths up to at least 2 km (400GBASE-FR4)
  • Define a four-wavelength 400 Gbit/s PHY for operation over SMF with lengths up to at least 6 km (400GBASE-LR4-6) [35]

802.3cw project

  • Provide a physical layer specification supporting 400 Gbit/s operation on a single wavelength capable of at least 80 km over a DWDM system (400GBASE-ZR)[36] Dual polarization 16-state quadrature amplitude modulation (DP-16QAM) with coherent detection is proposed.[37]

802.3db project

  • 200 Gbit/s Ethernet
    • Define a physical layer specification that supports 200 Gbit/s operation over 2 pairs of MMF with lengths up to at least 50 m (200GBASE-VR2)
    • Define a physical layer specification that supports 200 Gbit/s operation over 2 pairs of MMF with lengths up to at least 100 m (200GBASE-SR2)
  • 400 Gbit/s Ethernet
    • Define a physical layer specification that supports 400 Gbit/s operation over 4 pairs of MMF with lengths up to at least 50 m (400GBASE-VR4)
    • Define a physical layer specification that supports 400 Gbit/s operation over 4 pairs of MMF with lengths up to at least 100 m (400GBASE-SR4)

'IEEE P802.3db 100 Gb/s, 200 Gb/s, and 400 Gb/s Short Reach Fiber Task Force'

802.3df project

  • Adds 800G Ethernet rate and specifies port types using existing 100G per lane technology

IEEE P802.3df Objectives for 800 Gbit/s Ethernet and 400G and 800G PHYs using 100 Gbit/s lanes

802.3dj project

  • Adds 1.6T Ethernet rate and specifies port types using new 200G per lane technology

IEEE P802.3dj Objectives for 1.6 Tbit/s Ethernet and 200G, 400G 800 Gb/s, and 1.6 Tb/s PHYs using 200 Gbit/s lanes

200G port types

Legend for fibre-based PHYs[38]
Fibre typeIntroducedPerformance
MMF FDDI 62.5/125 µm19870160 MHz·km @ 850 nm
MMF OM1 62.5/125 µm19890200 MHz·km @ 850 nm
MMF OM2 50/125 µm19980500 MHz·km @ 850 nm
MMF OM3 50/125 µm20031500 MHz·km @ 850 nm
MMF OM4 50/125 µm20083500 MHz·km @ 850 nm
MMF OM5 50/125 µm20163500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
SMF OS1 9/125 µm19981.0 dB/km @ 1300/1550 nm
SMF OS2 9/125 µm20000.4 dB/km @ 1300/1550 nm
NameStandardStatusMediaConnectorTransceiver
Module
Reach
in m
#
Media
(⇆)
#
Lambdas
(→)
#
Lanes
(→)
Notes
200 Gigabit Ethernet (200 GbE) (1st Generation: 25GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 8x 26.5625 GBd = 212.5 GBd - Full-Duplex) [39][40][41]
200GAUI-8802.3bs-2017
(CL120B/C)
currentChip-to-chip/
Chip-to-module interface
0.2516N/A8PCBs
200 Gigabit Ethernet (200 GbE) (2nd Generation: 50GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 26.5625 GBd x2 = 212.5 GBd - Full-Duplex) [39][40][41]
200GAUI-4802.3bs-2017
(CL120D/E)
currentChip-to-chip/
Chip-to-module interface
0.258N/A4PCBs
200GBASE-KR4802.3cd-2018
(CL137)
currentCu-Backplane18N/A4PCBs;
total insertion loss of ≤ 30 dB at 13.28125 GHz
200GBASE-CR4802.3cd-2018
(CL136)
currenttwinaxial
copper
cable
QSFP-DD,
QSFP56,
microQSFP,
OSFP
N/A38N/A4Data centres (in-rack)
200GBASE-SR4802.3cd-2018
(CL138)
currentFibre
850 nm
MPO/MTP
(MPO-12)
QSFP56OM3: 70814uses four fibers in each direction
OM4: 100
200GBASE-DR4802.3bs-2017
(CL121)
currentFibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP56OS2: 500814uses four fibers in each direction
200GBASE-FR4802.3bs-2017
(CL122)
currentFibre
1271 – 1331 nm
LCQSFP56OS2: 2k244WDM
200GBASE-LR4802.3bs-2017
(CL122)
currentFibre
1295.56 – 1309.14 nm
LCQSFP56OS2: 10k244WDM
200GBASE-ER4802.3cn-2019
(CL122)
currentFibre
1295.56 – 1309.14 nm
LCQSFP56OS2: 40k244WDM
200 Gigabit Ethernet (200 GbE) (3rd Generation: 100GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 53.1250 GBd x2 = 212.5 GBd - Full-Duplex) [39][40][41]
200GAUI-2802.3ck-2022
(CL120F/G)
currentChip-to-chip/
Chip-to-module interface
N/A0.254N/A2PCBs
200GBASE-KR2802.3ck-2022
(CL163)
currentCu backplane14N/A2PCBs;
total insertion loss of ≤ 28 dB at 26.56 GHz
200GBASE-CR2802.3ck-2022
(CL162)
currenttwinaxial copper cableQSFP-DD,
QSFP112,
SFP-DD112,
DSFP,
OSFP
N/A24N/A2
200GBASE-VR2802.3db-2022
(CL167)
currentFiber
850 nm
MPO
(MPO-12)
QSFP
QSFP-DD
SFP-DD112
OM3: 30412
OM4: 50
200GBASE-SR2802.3db-2022
(CL167)
currentFiber
850 nm
MPO
(MPO-12)
QSFP
QSFP-DD
SFP-DD112
OM3: 60412
OM4: 100
200 Gigabit Ethernet (200 GbE) (4th Generation: 200GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x1 = 212.5 GBd - Full-Duplex)
200GAUI-1802.3dj
(CL176D/E)
developmentChip-to-chip/
Chip-to-module interface
N/A0.252N/A1PCBs
200GBASE-KR1802.3dj
(CL178)
developmentCu backplaneN/A2N/A1PCBs;
total insertion loss of ≤ 40 dB at 53.125 GHz
200GBASE-CR1802.3dj
(CL179)
developmenttwinaxial copper cableTBDN/A12N/A1
200GBASE-DR1802.3dj
(CL180)
developmentFiber
1310 nm
TBDTBDOS2: 500211

400G port types

Legend for fibre-based PHYs[38]
Fibre typeIntroducedPerformance
MMF FDDI 62.5/125 µm19870160 MHz·km @ 850 nm
MMF OM1 62.5/125 µm19890200 MHz·km @ 850 nm
MMF OM2 50/125 µm19980500 MHz·km @ 850 nm
MMF OM3 50/125 µm20031500 MHz·km @ 850 nm
MMF OM4 50/125 µm20083500 MHz·km @ 850 nm
MMF OM5 50/125 µm20163500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
SMF OS1 9/125 µm19981.0 dB/km @ 1300/1550 nm
SMF OS2 9/125 µm20000.4 dB/km @ 1300/1550 nm
NameStandardStatusMediaConnectorTransceiver
Module
Reach
in m
#
Media
(⇆)
#
λ
(→)
#
Lanes
(→)
Notes
400 Gigabit Ethernet (400 GbE) (1st Generation: 25GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 16x 26.5625 GBd = 425 GBd - Full-Duplex) [39]
400GAUI-16802.3bs-2017
(CL120B/C)
currentChip-to-chip/
Chip-to-module interface
0.2532N/A16PCBs
400GBASE-SR16802.3bs-2017
(CL123)
currentFibre
850 nm
MPO/MTP
(MPO-32)
CFP8OM3: 7032116
OM4: 100
OM5: 100
400 Gigabit Ethernet (400 GbE) (2nd Generation: 50GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 26.5625 GBd x2 = 425.0 GBd - Full-Duplex) [39]
400GAUI-8802.3bs-2017
(CL 120D/E)
currentChip-to-chip/
Chip-to-module interface
0.2516N/A8PCBs
400GBASE-KR8proprietary
(ETC) (CL120)
currentCu-Backplane18N/A8WDM
400GBASE-SR8802.3cm-2020
(CL138)
currentFiber
850 nm
MPO/MTP
(MPO-16)
QSFP-DD
OSFP
OM3: 701618
OM4: 100
OM5: 100
400GBASE-SR4.2
(Bidirectional)
802.3cm-2020
(CL150)
currentFiber
850 nm
912 nm
MPO/MTP
(MPO-12)
QSFP-DDOM3: 70828Bidirectional WDM
OM4: 100
OM5: 150
400GBASE-FR8802.3bs-2017
(CL122)
currentFibre
1273.54 – 1309.14 nm
LCQSFP-DD
OSFP
OS2: 2k288WDM
400GBASE-LR8802.3bs-2017
(CL122)
currentFibre
1273.54 – 1309.14 nm
LCQSFP-DD
OSFP
OS2: 10k288WDM
400GBASE-ER8802.3cn-2019
(CL122)
currentFibre
1273.54 – 1309.14 nm
LCQSFP-DDOS2: 40k288WDM
400 Gigabit Ethernet (400 GbE) (3rd Generation: 100GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 53.1250 GBd x2 = 425.0 GBd - Full-Duplex) [39]
400GAUI-4802.3ck-2022
(CL120F/G)
currentChip-to-chip/
Chip-to-module interface
0.258N/A4PCBs
400GBASE-KR4802.3ck-2022
(CL163)
currentCu-Backplane18N/A4PCBs;
total insertion loss of ≤ 28 dB at 26.56 GHz
400GBASE-CR4802.3ck-2022
(CL162)
currenttwinaxial
copper
cable
QSFP-DD,
QSFP112,
OSFP
N/A28N/A4Data centres (in-rack)
400GBASE-VR4802.3db-2022
(CL167)
currentFibre
850 nm
MPO
(MPO-12)
QSFP-DDOM3: 30814
OM4: 50
OM5: 50
400GBASE-SR4802.3db-2022
(CL167)
currentFibre
850 nm
MPO
(MPO-12)
QSFP-DDOM3: 60814
OM4: 100
OM5: 100
400GBASE-DR4802.3bs-2017
(CL124)
currentFibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP-DD
OSFP
OS2: 500814
400GBASE-DR4-2802.3df-2024
(CL124)
currentFibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP-DD
OSFP
OS2: 2k814
400GBASE-XDR4
400GBASE-DR4+
proprietary
(non IEEE)
currentFibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
QSFP-DD
OSFP
OSx: 2k814
400GBASE-FR4802.3cu-2021
(CL151)
currentFibre
1271−1331 nm
LCQSFP-DD
OSFP
OS2: 2k244Multi-Vendor Standard[42]
400GBASE-LR4-6802.3cu-2021
(CL151)
currentFibre
1271−1331 nm
LCQSFP-DDOS2: 6k244
400GBASE-LR4-10proprietary
(MSA, Sept 2020)
currentFibre
1271−1331 nm
LCQSFP-DDOSx: 10k244Multi-Vendor Standard[43]
400GBASE-ZR802.3cw
(CL155/156)
developmentFibreLCQSFP-DD
OSFP
OSx: 80k21259.84375 Gigabaud (DP-16QAM)
400 Gigabit Ethernet (400 GbE) (4th Generation: 200GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x2 = 425 GBd - Full-Duplex)
400GAUI-2802.3dj
(CL176D/E)
developmentChip-to-chip/
Chip-to-module interface
N/A0.252N/A1PCBs
400GBASE-KR2802.3dj
(CL178)
developmentCu backplaneN/A4N/A2PCBs;
total insertion loss of ≤ 40 dB at 53.125 GHz
400GBASE-CR2802.3dj
(CL179)
developmenttwinaxial copper cableTBDN/A14N/A2
400GBASE-DR2802.3dj
(CL180)
developmentFiber
1310 nm
TBDTBDOS2: 500412

800G port types

Legend for fibre-based PHYs[38]
Fibre typeIntroducedPerformance
MMF FDDI 62.5/125 µm19870160 MHz·km @ 850 nm
MMF OM1 62.5/125 µm19890200 MHz·km @ 850 nm
MMF OM2 50/125 µm19980500 MHz·km @ 850 nm
MMF OM3 50/125 µm20031500 MHz·km @ 850 nm
MMF OM4 50/125 µm20083500 MHz·km @ 850 nm
MMF OM5 50/125 µm20163500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
SMF OS1 9/125 µm19981.0 dB/km @ 1300/1550 nm
SMF OS2 9/125 µm20000.4 dB/km @ 1300/1550 nm
NameStandardStatusMediaConnectorTransceiver
Module
Reach
in m
#
Media
(⇆)
#
λ
(→)
#
Lanes
(→)
Notes
800 Gigabit Ethernet (800 GbE) (100GbE-based) - (Data rate: 800 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 53.1250 GBd x2 = 850 GBd - Full-Duplex) [39]
800GAUI-8802.3df-2024
(CL120F/G)
currentChip-to-chip/
Chip-to-module interface
0.2516N/A8PCBs
800GBASE-KR8802.3df-2024
(CL163)
currentCu-Backplane116N/A8PCBs;
total insertion loss of ≤ 28 dB at 26.56 GHz
800GBASE-CR8802.3df-2024
(CL162)
currenttwinaxial
copper
cable
QSFP−DD800
OSFP
N/A216N/A8Data centres (in-rack)
800GBASE-VR8802.3df-2024
(CL167)
currentFibre
850 nm
MPO
(MPO-16)
QSFP-DD
OSFP
OM3: 301618
OM4: 50
OM5: 50
800GBASE-SR8802.3df-2024
(CL167)
currentFibre
850 nm
MPO
(MPO-16)
QSFP-DD
OSFP
OM3: 601618
OM4: 100
OM5: 100
800GBASE-DR8802.3df-2024
(CL124)
currentFibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-16)
QSFP-DD
OSFP
OS2: 5001618
800GBASE-DR8-2802.3df-2024
(CL124)
currentFibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-16)
QSFP-DD
OSFP
OS2: 2k1618
800 Gigabit Ethernet (800 GbE) (200GbE-based) - (Data rate: 800 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x4 = 850 GBd - Full-Duplex)
800GAUI-4802.3dj
(CL176D/E)
developmentChip-to-chip/
Chip-to-module interface
N/A0.258N/A4PCBs
800GBASE-KR4802.3dj
(CL178)
developmentCu backplaneN/A8N/A4PCBs;
total insertion loss of ≤ 40 dB at 53.125 GHz
800GBASE-CR4802.3dj
(CL179)
developmenttwinaxial copper cableTBDN/A18N/A4
800GBASE-DR4802.3dj
(CL180)
developmentFiber
1310 nm
TBDTBDOS2: 500814

1.6T port types

NameStandardStatusMediaConnectorTransceiver
Module
Reach
in m
#
Media
(⇆)
#
λ
(→)
#
Lanes
(→)
Notes
1.6 Terabit Ethernet (1.6 TbE) (200GbE-based) - (Data rate: 1.6 Tbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x8 = 1700 GBd - Full-Duplex)
1.6TAUI-8802.3dj
(CL176D/E)
developmentChip-to-chip/
Chip-to-module interface
N/A0.2516N/A8PCBs
1.6TBASE-KR8802.3dj
(CL178)
developmentCu backplaneN/A16N/A8PCBs;
total insertion loss of ≤ 40 dB at 53.125 GHz
1.6TBASE-CR8802.3dj
(CL179)
developmenttwinaxial copper cableTBDN/A116N/A8
1.6TBASE-DR8802.3dj
(CL180)
developmentFiber
1310 nm
TBDTBDOS2: 5001618

See also

References

Further reading